3

RACORS

sf16

16-bit microporcessors

Quick Reference Guide
V0.95
November 2013

Author: Martin Raubuch

Property of RACORS GmbH

info@racors.com

l.’ Quick Reference Guide V0.95 sf16
t"

RACORS

Introduction

The sf16 is a 16-bit microprocessor architecture for embedded control & computing applications with limited code
size requirements. Main focus of the ISA (Instruction Set Architecture) definition is on high clock rates and small
core implementations. Two ISA versions are available:

sf16b: base (b) ISA for general purpose contral & computing

sf16d: dsp (d) extension: base |ISA with extensions for DSP applications

The sf16 is a load/store architecture. All operands of computation instructions are either constants or contained in
registers. Load/store instructions are used to transfer operands between registers and memory. The sf16d ISA
slightly deviates from this concept. Some of the additional instructions have one memory source operand to
improve performance.

The sf16 base ISA defines a generic and complete instruction set for efficient high level language compiler
implementations.

sf16b (base ISA) features

» Harvard architecture with separate instruction and data interfaces

- 128kBytes instruction address space (can be extended up to 16Mbytes)

* 64kBytes data address space

* Fixed length 16-bit instruction coding

+ 16 interrupts with programmable start addresses

« 8 x 16-bit general purpose registers and 8 special registers

« Native support for 8-bit and 16-bit signed and unsigned integer data types

* Higher precision integer and float data types supported by multi-instruction sequences

* Rich set of load/store addressing modes, including indirect with index and update addressing
» Little endian byte ordering

« Load/store multiple instructions for code efficient copying and function prologue/epilogue
« Bit manipulation & test instructions: set, clear, toggle & test

+ 16*16 multiply with either 16-bit high word or 16-bit low word results

* Flexible debug concept with application specific debug modules

sf16d (DSP extension ISA) additional features

* multiply high instructions with optional left-shift and with one source operand read from memory

* multiply and accumulate instruction with optional left-shift and with one source operand read from memory

» multiply and subtract instruction with optional left-shift and with one source operand read from memory
» clip, clip with left-shift and clip to unsigned byte instructions

» Two registers with accumulation extension cache for sum-of-products calculations with 32-bit precision

2 Property of RACORS GmbH 12.11.2013

l“ Quick Reference Guide V0.95 sf16 b/d
)
RACORS
General Purpose Registers
Register Bits 15/14]13]12]11J10] 9] 8] 7] 6] 5] 4] 3] 2] 10
Rn | An | Name
0 RO RO
1 R1 R1
2 R2 R2
3 R3 8 x 16-hit general purpose registers R3
4 R4 R4
3 R5 R5
6 2 R6 R6
7 3] R7 R7
Registers R6 and R7 can also be used as indirect address An, the 3rd and 4th indirect address register are special registers
TA and SP
Special Registers
Register Bits 15/14]13]12]11J10] 9] 8] 7] 6] 5] 4] 3] 2] 10
SRn| An | Name 8 special registers
0 CC [Condition Codes | RND [nN]zJo]cC
1 CS |Control & Status MS|AS| IS| IE[IR] IVTP
2 LC Loop Counter LC
3 AU |Address Update AU
4 0 SP |Stack Pointer SP
3 1 TA |Target Address (indirect jump) TA
6 SA |Subroutine (return) Address SA
7 ID [CorelD REV | | ISA | FML=5
Register Fields
C Carry flag
0 OQverflow flag
CC z Zero flag
N Negative flag
RND Round control, sf16d only,0: no round, 1-10 adds (1 << (RND+13)) to 32-bit multiply products
IVTP Interrupt Vectors Table Pointer, defines the 11 MSBs [15:5] of the interrupt vector table start address
IR Interrupt, O: not in an interrupt, 1: interrupt processing
cs IE Interrupt Enable, 0: interrupts disabled, 1: interrupts enabled
IS Interrupt (enable) Shadow, used to save/restore IE when scie/rsie instructions are executed
AS Address select, if '1' accesses to the SA registers actually access the interrupt return address
MS Multiply Shift, enable a left-shift for the mlhnd, mlhsd, massd amd macsd instr., d ISA only
FML Core Family, 1: eco16, 2: eco32, 4: sf32, 5: sf16
D ISA ISA=1=b (base), 2 =d (dsp)
IMA Implementation Architeture, 1: | = light, 4. u = ultralight
REV Revision, starting with 1

The MS bit of register CS and the RND field of register CC are availabe only in the d (DSP) ISA

Property of RACORS GmbH

12.11.2013

(:’ Quick Reference Guide V0.95 sf16b
$
RACORS
Load/Store instructions
Operand Symbols Operand Addressing
DA8 8-bit absolut data address, scaled 0x0000-0x00FF (byte), 0x0000-0x01FE (short)
DO5s |5-bit data address offset, signed, scaled, including zero -16,-14, ,... 15 (byte), -32, -30, ... 30 (short)
Rs register Rn (R0-R7) used as source operand E = o E .
Rd register Rn (RO-R7), used as destination operand ° E‘ Zlols|olO|sldl]+] |- E
Rx register Rn (RO-R7), used as index operand Clsle(Ble|l|Z|<|[O|x|T Z ||+
An registers An (SP, TA, R6, R7) used as indirect address 2 8 i ’:::“ = jE jé Q_ Q_ %. $ v 5 0
< Al |lo|lo|lon| vl
RGS |register selection, any selection of R2, R3, R4, R5, R6, and RO, R1 (byte only) or TA, SA (shortonly] 2|2 |E | | [|L | | | | [| | &2
Mnemo Description Addressing Modes
Idbt load byte (8-bit) and zero-extend to 16 bits i B R e e
stbt store byte (8-hit) i B R R
Idsh load short (16-bit) i e e e
stsh store short (16-bit) B R R
eda (16-bit effective data address) generation (Load/Store Addressing Modes)
DA8 8-bit direct address eda = size*DAS8, size = 1 (byte), 2 (short)
(DO5s,An) indirect with 5-bit signed offset eda = An + size*DO5g, size = 1 (byte), 2 (short)
(Rx,An) indirect with scaled index eda = An + size*Rx, size = 1 (byte), 2 (short)
(An)+ indirect with post-increment eda = An, An += size, size = 1 (byte), 2 (short)
-(An) indirect with pre-decrement eda = An - size, size = 1 (byte), 2 (short), An = eda
(An)* indirect with post-update eda = An, An += AU (special register)
4 Property of RACORS GmbH 12.11.2013

(73]

Quick Reference Guide V0.95

sf16b

RACORS
Flow Instructions
Operand Options Oper. Addr.

Implied no operands or operands are implicitly defined
108g 8-bit instruction address offset (16-bit word granularity), -128 to 127 instructions -
IA12 12-bit absolut instruction address in 16-bit word granularity, 0x0000 to OxOFFF % N -
IAH 4-bit instruction address high (bits [15:12] of instr. Address), 0x1 - OxF E g o<

Mnemo Description Addr. Mode

jump, jump-to-subroutine, return
jump jump bl B
jpsr jump to subroutine W
rtsr return from subroutine *
rtir return from interrupt *
conditional branches

mnemo condition CND specified as logical equation of C=CC.C,0=CC.0,Z=CC.Zand N=CC.N
brnc branch if no carry CND =~C *
brer branch if carry CND =C *
brno branch if no overflow CND = ~0O *
brof branch if overflow CND =0 *
brnz branch if non zero CND=~Z *
brzr branch if zero CND =2 *
brps branch if positive CND = ~N *
brng branch if negative CND =N *
brls branch if lower or same CND=C|Z *
brhi branch if higher CND =~C & ~Z *
brlo branch if lower CND=(N&~O)|(~N &QO) *
brge branch if greater or equal CND =(N&O)|(~N & ~O) *
brle branch if lower or equal CND=Z|(N&~0)|(~N & Q) *
brgt branch if greater CND =~Z & ((N & O) | (~N & ~O)) *
bral branch always CND =1 (true) *
brlc branch if loop counter is unequal zero LC-=1,CND=LC!=0 *

other

siah set instruction address high, sets the hidden 4-bit JAH register *
stie set interrupt enable, sets |IE bit in CS *
clie clear interrupt enable, clears IE bitin CS *
rsie restore interrupt enable, transfers IS bit of CS to |E bit of CS *
scie save and clear interrupt enable, transfers IE bit of CS to IS bit of CS, then clears |E *
stas set address select, sets AS bit in CS *
clas clear address select, clears AS bitin CS *
stop stop, enter stopped (debug) state *
svpc save program counter (write to debug port) *
rspc restore program counter (read from debug port) *
The 16-bit target address of jump and jpsr instructions with the IA12 addressing mode is the concatenation of the hidden 4
bit /JAH register and the 12-bit absolute address IA12. After the jump the IAH register is cleared to zero. Without a
preceding siah instruction the address range is limited to 4k instructions from 0x0000-0xOFFF. With a preceding siah
instruction the full instruction address range from 0x0000-0xFFFF can be reached.

Property of RACORS GmbH

12.11.2013

(.’ Quick Reference Guide V0.95 Sf’| Bb

RACORS
Arithmetic Computation Instructions
Operand Field Elements Operand Addressing

C7sn 7-bit constant (Signed, Not including zero), -64 to 64
C8a 8-bit constant (Asymmetric) -64 to -1 and 0 to 255 %
C8un 8-bit constant (Unsigned, Not including zero) 1 to 256 - =
C16y 16-bit constant (Unsigned), 8 LSBs are not coded and are all zeros 0x0000 to OxFF00 o le - EE %
Rs,Rs0,Rs1 register Rn, used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand x| g_ E ¥ o | & 3
Rd,Rb register Rn, used as destination (Rd) or as both source and destination (Rb) operand é gj é & %' » Dcf). cc:nf O
Ad register An (SP, TA, R6, R7), used as destination operand Qoo ||y || g

Mnemo Description Addressing Modes O
addt add to * ¥ ox
addc add with carry, destination = sourceQ + sourcel + CC.C ol
adcf add carry flag, destination = source + CC.C * *
addh add to high word *
adsp add to stack pointer *
subf subtract from, source0 from source * L F
subc subtract with carry, destination = source1 - sourceQ - CC.C o
shcf subtract carry flag, destination = source - CC.C * *
comp compare (subtract source 0 from source 1) o *
cmpc compare with carry * *
cpcf compare carry flag (subtract CC.C from source) * *
negt negate *
absl absolute value *
clzr count leading zeros *
sxbt sign extend hyte *
sxsh sign extend short *
mult multiply unsigned, 16*16 -> 32, store low word of result in destination *
mlhu multiply high unsigned, 16*16 -> 32, store high word of result in destination *
mlhs multiply high signed, 16*16 -> 32, store high word of result in destination *

6 Property of RACORS GmbH 12.11.2013

<= Quick Reference Guide V0.95 sf16b
L)

RACORS
Miscellaneous Instructions
Operand Options Operand Addressing
Implied no operands or operands are implicitly defined
BTI4y, 4-bit bit index (Unsigned), 0 to 15
SHC4y, 4-bit shift count (Unsigned), 0 to 15
CTy 7-bit constant (Unsigned) 0 to 127 -
CT7un 7-bit constant (Unsigned, Not including zero) 1 to 128 %
CT7sn 7-bit constant (Signed, Not including zero) -64 to 64 2
C8y 8-bit constant (Unsigned) 0 to 255 - - ﬁ
C9s 9-bit constant (Signed), -256 to 255 AR E olo ‘0_5. _ E‘_Q §
Rs,Rs0,Rs1 register Rn, used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand D; Di—) Q 8 8 1< | B yl¥lo 2| & & <
Rd, Rb register Rn, used as destination operand (Rd) or both source and destination operand (Rb) E E % 32 é h_% Slale %. 2 Lttﬂ' (=) B =
SRs, SRd special register SRn, used as source (SRs) or destination (SRd) operand mojnjojojlo|o[O|O|l|||v|X|r|o =
Mnemo Description Addressing Modes O

Logic
andb logical and bit wise, also calculates parity of the result * * *
iorb logical inclusive or bit wise * *
xorb logical exclusive or bit wise *
invt invert *

Move
move move * *
mfsr move from special register *
mtsr move to special register i *
mfdp move from debug port, transfers the debug port input value to the destination operand *
mtdp move to debug port, transfers the source operand to the core's debug port *

Shift
shiz shift left with zero fill * *
shlf shift left with feedback (from MSB) * *
shru shift right unsigned * *
shrs shift right signed * *

Bit Manipulation

btst bit set * *
btcl bit clear * *
bitg bit toggle * *
btts bit test, does not update the destination register * * *

7 Property of RACORS GmbH 12.11.2013

(.’ Quick Reference Guide V0.95 sf16d

‘0‘

RACORS

DSP ISA Extension Instructions
Operand Options Op. Adr.
Implied no operands or operands are implicitly defined S
Rs,Rs0 register Rn, used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand i‘E
Rb register Rn used as destination or both source and destination rle g
Ra accumulator register R4 or R5 used as destination or both source and destination e & v
Mnemo Description
addsd left shift source operand 1 by one bit and add *
subsd left shift source operand 1 by one bit and subtract *
clipd clip signed to 0xC0O00 / Ox3FFF boundaries *
clshd clip and shift, same as clip but with a 1-bit left shift after the clipping *
clubd clip to unsigned byte, if <0 clips to 0, if > OxFF clips to OxFF *
milhsd multiply signed, 16*16 -> 32, store high word of result in destination *
minsd multiply & negate signed, 16*16 -> 32, store high word of result in destination *
macsd multiply & accumulate signed, 16*16 -> 32, add high word of result to destination *
massd multiply & subtract signed, 16*16 -> 32, subtract high word of result from destination *
mshsd multiply & left-shift signed, 16*16 -> 32, store high word of result in destination *
mshsd multiply, left-shift & negate signed, 16*16 -> 32, store high word of result in destination *
msasd multiply, left-shift signed & accumulate, 16*16 -> 32, add high word of result to destination *
msssd multiply, left-shift signed & subtract, 16*16 -> 32, subtract high word of result from destination *
m2hsd multiply & 2-bit left-shift signed, 16*16 -> 32, store high word of result in destination *
m2nsd multiply, 2-bit left-shift & negate signed, 1616 -> 32, store high word of result in destination *
m2asd multiply, 2-bit left-shift signed & accumulate, 16*16 -> 32, add high word of result from destination *
m2ssd multiply, 2-bit left-shift signed & subtract, 16*16 -> 32, subtract high word of result from destination *
Property of RACORS GmbH 12.11.2013

