

User Manual

Revision 1.0
27. December 2013

Author: Martin Raubuch

digital circuit simulator lite

dcs-lite

Property of RACORS GmbH
info@racors.com

 dcs-lite User Manual 27.12.2013

2 Property of RACORS GmbH Rev. 1.0

Revision History
Revision Date

0.9 07Sep2012 First version derived from dcs user manual
1.0 27Dec2013 Review, property note changed to RACORS GmbH

Table of contents
1 Overview ... 3

1.1 Introduction ... 3

1.2 dcs-lite .. 3

1.3 Feature summery .. 3

2 User Interface .. 4

2.1 Concept .. 4

2.2 Invocation ... 4

2.3 Control File ... 4

2.4 List Vectors ... 7

2.5 Memory Dump .. 8

 dcs-lite User Manual 27.12.2013

3 Property of RACORS GmbH Rev. 1.0

1 Overview

1.1 Introduction
The dcs simulator is a tool for the development and verification of digital circuits. Focus is on high efficiency
and high simulation speed to handle complex circuits and long simulation sequences. The tool has been
created primarily for the development of the eco and sf families of microprocessors but can as well be used
for any other digital circuits.
The dcs based development flow is specifically optimized for processor cores and for hardware/software co-
development. The cycle based simulation mode is used to develop bit true models, e.g. ISS (Instruction Set
Simulation) models of microprocessors. It provides very high simulation speed (~10Mcycles/s) and is well
suited for software and programming tools development.
The event based simulation mode is used to develop cycle and structure accurate hardware models. It
provides higher simulation speed than Verilog RTL simulators (some 100kcycles/s depending on circuit
complexity and host performance). Structure accurate means that the circuit hierarchy and signal and
register names of logic modules are defined in the dcs model and are later transferred one by one to a
Verilog RTL model.
After verification in the dcs environment circuits are translated to synthesizable Verilog RTL. Dcs generates
skeleton Verilog modules (I/Os, registers, sub-module instantiations and sub-module connections). The
actual translation of primitive modules to synthesizable RTL is done manually but is an easy and quick step
compared to the development and verification phase. Verilog RTL modules are verified against the
corresponding dcs models using cycle by cycle matching of the dcs and Verilog simulation outputs. Dcs
generates Verilog stimulus files, Verilog wrapper files and utilities for the matching of simulation outputs.
Circuits consist of a hierarchy of interconnected modules. Modeling is done directly in C language. Circuit
models are compiled and linked with the simulator kernel to generate the simulator executable. Primitive
modules have one or more functions that implement the RTL or bit true behavior.
Besides the high simulation speed and the ability to create cycle & structure accurate models one major
benefit of dcs over other C language modeling techniques is the X-state (undefined state) handling which is
extremely helpful for digital circuit debugging.
Dcs is a command line tool with a simple but efficient user interface. To run simulations using an existing
circuit model, e.g. for software development or functional/performance evaluation of IP blocks is easy also
for new users. Modeling and circuit development however requires in depth knowledge of digital circuits,
modeling and simulation techniques and the C language.

1.2 dcs-lite
This user manual is for dcs-lite a stripped down version of dcs. The lite version is provided to simulate
existing circuits. The features for circuit development have been removed. Executables are circuit specific
and contain the simulation engine and the circuit model.

1.3 Feature summery
• Command line tool for digital circuit simulation with high speed
• Cycle based, 2-state (0,1) simulation mode for bit true models
• Event based, 3-state (0,1,X) simulation mode for cycle accurate models
• Generation of simulation listings with disassembled processor instructions
• Generation of memory dumps
• Command to load memory models from eco and sf assembler output (.cod files)

 dcs-lite User Manual 27.12.2013

4 Property of RACORS GmbH Rev. 1.0

2 User Interface

2.1 Concept
Dcs-lite is not an interactive tool. Each run simulates the specified number of cycles and then the tool exits.
Two output files with simulation results are generated. Per cycle list vectors are written into the file ‘listfile’. At
the end of the simulation user specified sections of memory content are written into file ‘memdump’.
The number of cycles to simulate and the cycles for which to generate list vectors is specified as command
line arguments when the tool is invoked. All other control parameters and commands (simulation mode, list
vector definition, memory loading from files, etc.) are read from the file ‘dcscontrol’ in the local directory.
Because circuit models are C files that are compiled and linked with the simulation kernel dcs-lite
executables are circuit specific and have circuit specific names. Circuit models are different between the 2-
state cycle based and the 3-state event based simulation modes and separate executables are generated for
the two modes.

2.2 Invocation
Dcs-lite is started by typing the name of the executable in the command shell followed by an optional
sequence of simulation cycle numbers and list vector specifiers as arguments. If no arguments are given the
default number of simulation cycles is 1000.
Arguments are integer numbers that specify the number of cycles to simulate. The maximum number is the
maximum value of an unsigned 32-bit integer. Each cycle number can be optionally followed by a list-vector
specifier (letter ‘a’, ‘b’, ‘c’, or ‘d’) to indicate that dcs-lite should generate list vectors for the specified number
of simulation cycles. The examples below illustrate the concept.
Example 1
executable_name

Simulates 1000 cycles with no list vector generation, (default, if no run command is in the control file)
Example 2
executable_name 500000

Simulates 500.000 cycles with no list vector generation
Example 3
executable_name 34621 b

Simulates 34.621 cycles with format b list vector generation
Example 4
executable_name 65000 1520 d

First simulates 65.000 cycles with no list vector generation, then simulates 1.520 cycles with format d list
vector generation
Example 5
executable_name 100000 4784 c 23000 2500 a

First simulates 100.000 cycles with no list vector generation, then simulates 4.784 cycles with format c list
vector generation, then simulates 23.000 cycles with no list vector generation, finally simulates 2.500 cycles
with format a list vector generation.
Example 4 is the most commonly used format for hardware/software debugging and for IP block evaluation.
The first phase generates no list vectors for the best possible simulation speed. The second phase is the
interesting section and list vectors are generated. The generation of list vectors and writing into ‘listfile’
significantly slows down the simulation speed. When running high cycle count simulations it is a good idea to
generate list vectors only for interesting sections of the simulation time window.

2.3 Control File

Format
Dcs-lite expects a control file with the name ‘dcscontrol’ in the local directory. The file has a simple, line
based format. Lines that start with a blank, ‘;’ or ‘#’ character are treated as comment lines and are ignored.
All other lines must start with a command keyword. The following paragraphs describe the syntactical
elements of control file commands.

 dcs-lite User Manual 27.12.2013

5 Property of RACORS GmbH Rev. 1.0

• Numbers: unsigned integers, can be specified in decimal format (sequence of the letters 0-9), or in
hexadecimal format (prefix 0x followed by a sequence of the letters 0-9,a-f,A-F). Numbers specified
in decimal format are converted to 32-bit integers and the maximum value is 2**32 - 1. Numbers
specified in hexadecimal format are converted to 64-bit integers.

• Strings: sequences of any printable characters and blanks (except for the double quote ‘”’ character)
enclosed in double quote ‘”’ characters, CR (carriage return) control characters can be specified with
the \n 2-letter sequence, maximum length is 256 characters.

• Keywords: Keywords are not case sensitive. The following is a list of all keywords in alphabetical
order: a, all, b, bin, byte, c, cycle, d, data, ev3st, hex, input, item, long, lva, lvb, lvc, lvd,
memdmp, memld, nospace, off, on, out, output, register, run, scmsg, short, space, text,
usrstring, variable

Module instances of the simulated circuit and their inputs, outputs, registers and variables are referenced by
strings. For instances the path within the circuit hierarchy is specified in the same way as file paths. For
example if the top level of the circuit contains an instance named CPU which contains a sub-instance
CACHE which contains a sub-instance CTR then the instance CTR would be referenced by the string
“/CPU/CACHE/CTR”.

Command Set
The following paragraphs are detailed descriptions of the dcs-lite control file commands in alphabetical
order. Command descriptions start with the command syntax in the following format:
Command-key <mandatory argument(s)> [optional argument(s)]
For each argument the syntax type is specified first followed by the name of the argument in bold letters.
Elements with multiple options are separated by ‘|’ (logical or) character.

lva, lvb, lvc, lvd
These four commands are used to define the list vector formats a, b, c, and d respectively. The commands
and their effect on the respective list vector formats is identical for list vectors a, b, c and d. Each command
adds an item to the respective list vector format. The second keyword determines the type of item added and
the syntax of the parameters that follow. The next paragraphs describe the lva command options and their
effect on the list vector format a as example. More details can be found in the separate list vectors section
of this chapter.

lva output <keyword hex|bin|vsp> <keyword space|nospace> <string instance> <string output-signal>
Adds the specified output-signal of the specified instance to list vector format a. If the instance path or
output-signal doesn’t exist an error message is printed.
The next keyword following output specified the print format.The options are hex (hexadecimal) or bin
(binary). With the hex and bin formats the output-signal is printed with the minimum number of digits to
represent the bit width of output-signal. The mandatory space or nospace options determine if a leading
space character is printed before the output-signal is printed.

lva input <keyword hex|bin|vsp> <keyword space|nospace> <string instance> <string input>
Adds the specified input of the specified instance to list vector format a. If the instance path or input
doesn’t exist an error message is printed. The remaining elements of the command are the same as for the
lva output command.

lva register <keyword hex|bin|vsp> <keyword space|nospace> <string instance> <string register>
Adds the specified register of the specified instance to list vector format a. If the instance path or register
doesn’t exist an error message is printed. The remaining elements of the command are the same as for the
lva output command.

lva variable <keyword hex|bin|vsp> <keyword space|nospace> <string instance> <string variable>
Adds the specified variable of the specified instance to list vector format a. If the instance path or variable
doesn’t exist an error message is printed. The remaining elements of the command are the same as for the
lva output command.

 dcs-lite User Manual 27.12.2013

6 Property of RACORS GmbH Rev. 1.0

lva text <string text>
Adds the specified text string to list vector format a. Strings can contain ‘\n’ characters to define multi line list
vector formats or to add a blank line as separator.

lva userstring <number n> <keyword space|nospace> <string instance>
Adds the userstring of the specified instance to list vector format a. Parameter n specifies the length of the
printed string. Let the length of the module defined user string be k. If k>n the first n characters of the user
string are printed. If k<n then the extra characters are printed as blanks. The space or nospace parameter
determines if a leading space character is printed before the user string.

memld <keywordtext|data> <string instance> <number offset> <string file>
The workspace of the specified instance is loaded with data from the specified file. Dcs modules can have
a workspace which is typically used for memory models or for large register files.
With the memld command memory models can be loaded from eco and sf assembler output files. In the
event based 3-state simulation mode, memory locations that are loaded from a .cod file are set to the
defined state.
The .cod files that are generated by the eco and sf standalone assemblers contain text and data sections.
The text or data parameter of the memld command specifies from which section the memory model is
loaded.
The specified offset is a 32-bit integer that is added to the address of text or data records from the .cod file.
For negative offsets a 2’s complement 32-bit number, e.g. 0xFFFFFF80 for -128 must be specified.
Errors are printed if the instance does not exist, if the instance has no workspace or if an address (.cod
record address + offset) is out of range with respect to the instance’s workspace.

memdmp <string instance> <number addr> <number items> <keyword byte|item>
<keyword byte|short|long> <number items_per_line> <string name>
An entry with the specified parameters is added to the memory dump list. At the end of a simulation dcs
generates the output file ‘memdump’ with sections of memory content listings. Each memdmp command
defines one section that is written into ‘memdump’.
The instance (1st parameter) defines the instance path of the memory. An error is generated if the instance
does not exist or if the instance has no workspace (is not a memory).
The item type (5th parameter) has the options byte, short or long. With the byte option, 8-bit values are
printed with 2 hexadecimal digits per value. With the short option, 16-bit values are printed with 4
hexadecimal digits per value.With the long option, 32-bit values are printed with 8 hexadecimal digits per
value. Printed values are separated with one space character.
The address format parameter (4th parameter) has the options byte or item. With the byte option the start
address addr (2nd parameter) is interpreted as a byte address and the addresses printed at the beginning of
each line of the memory content listing are byte addresses. With the item option the start address addr (2nd
parameter) is interpreted as an item address and the addresses printed at the beginning of each line of the
memory content listing are item addresses. Item address means that if for example the item type (5th
parameter) is long the address n references the nth 32-bit word of the memory.
The addr value (2nd parameter) specifies the start address of the memory content that is listed. An error
message is printed if the address range that is specified by addr and items does not lie completely inside
the instance workspace.
The items value (3rd parameter) specifies the number of items to be listed. An error message is printed if the
address range that is specified by addr and items does not lie completely inside the instance workspace.
The items_per_line value (6th parameter) defines how many items are printed per line.
The name string (7th parameter) specifies a name for the section. This name is printed in a separate line
before the listing starts. Purpose is to make it easier to find sections in the ‘memdump’ file.

run <number cycles> [keyword a|b|c|d|v]
Specifies the number of cycles to simulate and an optional list vector format. The list vector format can be a,
b, c, d, or v. If no list vector format is specified no list vectors are generated.
Multiple run commands can be present in the command file. The simulator executes them in the order of
their appearance. With multiple run commands it is possible to define time windows with and without list
vector generation similar as it can be done by specifying command line arguments when dcs is invoked.

 dcs-lite User Manual 27.12.2013

7 Property of RACORS GmbH Rev. 1.0

scmsg <keyword on|off>
Switches screen messaging on or off. This is for messages that are generated by circuit modules, typically
by test bench modules. Dcs provides a global variable (must be declared external in message generating
modules) for module implementations to check if screen messaging is switched on or off. Purpose is to
switch screen message generation off when not needed to increase simulation speed.

simod <keyword cycle|ev3st>
Sets the simulation mode to cycle (cycle based, 2-state 0 and 1) or ev3st (event based, 3-state, 0,1,X). The
selected mode must correspond with the circuit model. Selecting the wrong mode generates meaningless
simulation results.

2.4 List Vectors
The purpose of list vectors is to visualize simulation results of longer time periods.During periods where list
vector generation is enabled dcs-lite writes one list vector per simulation cycle into the file ‘listfile’ in the local
directory. The generated file is an ASCII text file and can be viewed with any text editor.
Four list vector formats a, b, c and d can be defined. All list vector formats start with the simulation cycle
number. The cycle number is printed as a 10-digit decimal number followed by two space characters as
separator. The cycle item is part of all list vector formats and does not need to be specified by an lva, lvb,
lvc or lvd command. The remaining items of user formats a, b, c, and d are defined by a series of lva, lvb,
lvc and lvd commands in the dcs-lite control file. Each command adds one item to the respective list vector
format. The following item types are supported:

• inputs, outputs, registers, variables: these items refer to the state of module instances of the
simulated circuit. The input, output, register or variable state of the specified module instance is
printed in hexadecimal or binary format. Values are printed with the minimum number of digits
required to represent the bit width of the specified item. A leading optional space character can be
printed as separator. In the ev3st (event based 3-state) simulation mode undefined bits are printed
as ‘X’ characters. For values that are printed in hexadecimal format an ‘X’ is printed if any of the bits
represented by a digit is undefined.

• text: with this item type user defined text strings can be included. Main use cases are separators
(multiple space characters) and names of instance state items. Text strings can include ‘\n’
characters to create multi line list vector formats or to separate multi line vectors with a blank line.

• userstring: dcs-lite module definitions can include a programmable length user string. For modules
with a user string the simulation data structure of module instances provides a pointer for module
implementation functions to write to the user string. Main use case is to include disassembled
processor instructions in list vectors.

The reason for having multiple user defined list vector formats is to avoid the need for changing a single
format every time different signals should be listed, e.g. during circuit debugging. The fact that list vectors
are helpful for both hardware and software debugging is another good reason for having multiple user
defined formats.
For software debugging typical list vector formats contain the disassembled instruction and the processor
registers of the programming model. The ability to include disassembled instructions is one of the most
powerful features of dcs-lite. In most cases the cycle based, 2-state simulation mode is used for software
and programming tools development. It has the advantage of very high simulation speed. Runs with billions
of cycles complete in short times.
The event based 3-state simulation mode can also be useful for software and programming tools
development, e.g. in the following cases:

• Accurate performance evaluation. With cycle and structure accurate circuit models simulation
results 100% reflect the cycle by cycle behavior and performance of the hardware circuit. List vectors
show processor stalls caused by either hardware (bus wait states) or data dependencies. Especially
if circuits include peripherals and memories ev3st mode simulations can be used to analyze
performance bottlenecks and optimize software, e.g. by instruction reordering or alignment of loop
entry points.

• Debugging. In ev3st mode simulations memory locations that are not preloaded with a memld
command in the control file are initially undefined. If software reads and uses an undefined variable
the entire processor state goes to undefined after a few clock cycles. This makes it easy to find
software bugs that are related to uninitialized variables.

 dcs-lite User Manual 27.12.2013

8 Property of RACORS GmbH Rev. 1.0

2.5 Memory Dump
File ‘memdump’ in the local directory is generated at the end of a simulation run and lists the content of
memories of the simulated circuit. The file contains multiple sections each section is defined by a memdmp
command in the control file.
Sections start with a separator line filled with ‘*’ characters and the memory’s instance name in the middle.
The next line prints the section’s name which is defined by the associated memdmp command (last
parameter). The following lines are the actual memory content listing. They start with an address followed by
a two-character separator followed by a user defined number of memory content values, separated by space
characters.
Values are printed as 2 (byte), 4 (short) or 8 (long) digit hexadecimal numbers with no prefix. In the ev3st
simulation mode digits are printed as ‘X’ (undefined) if any of the four bits represented by a digit is undefined.
In the cycle simulation mode memory content is always defined and is initialized to all zeros at the beginning
of the simulation.
The address at the beginning of each line can be a byte address or an item address as defined by the
associated memdmp command. Item addresses point at the nth item (byte, short or word) of the memory.

