(73]

RACORS

sf20

16-bit microprocessors

Quick Reference Guide
V1.0
December 2014

Author: Martin Raubuch

Property of RACORS GmbH

info@racors.com

N Quick Reference Guide V1.0
sf20
L

RACORS

Introduction

The sf20 is a 16-bit microprocessor architecture for embedded control & computing applications with limited code
size requirements. Main focus of the ISA (Instruction Set Architecture) definition is on high clock rates and small
core implementations. Two ISA versions are available:

sf20b: base (b) ISA for general purpose control & computing

sf20d: dsp (d) extension: base ISA with extensions for DSP applications

The sf20 is a load/store architecture. All operands of computation instructions are either constants or contained in
registers. Load/store instructions are used to transfer operands between registers and memory. The sf20d ISA
slightly deviates from this concept. Some of the additional instructions have one memory source operand for
improved DSP performance.

The sf20 base ISA defines a generic and complete instruction set for efficient high level language compiler
implementations.

sf20b (base ISA) features

e Harvard architecture with separate instruction and data interfaces

* 64k x 20-bit instruction address space

* 64kBytes data address space

« Fixed length 20-bit instruction coding

« 16 interrupts with programmable start addresses

« 16 x 16-bit general purpose registers and 8 special registers

« Native support for 8-bit and 16-bit signed and unsigned integer data types

« Higher precision integer and float data types supported by multi-instruction sequences

« Rich set of load/store addressing modes, including indirect with index and update addressing
« Little endian byte ordering

 Load/store multiple instructions for code efficient copying and function prologue/epilogue
« Bit manipulation & test instructions: set, clear, toggle & test

« 16*16 multiply with either 16-bit high word or 16-bit low word results

« Flexible debug concept with application specific debug modules

sf20d (DSP extension ISA) additional features

» multiply high instructions with optional left-shift and with one source operand in memory

» multiply and accumulate instruction with optional left-shift and with one source operand in memory

» multiply and subtract instruction with optional left-shift and with one source operand in memory

« clip, clip with left-shift and clip to unsigned byte instructions

« Eight additional special registers

« Three indirect addressing modes for memory source operands, with offset and direct/indirect update
« Four address update registers for fast and code efficient navigation through coefficient/sample tables
* Four registers with accumulation extension for sum-of-products calculations with 32-bit precision

2 Property of RACORS GmbH 04.12.2014

wyy

Quick Reference Guide V1.0

sf20b

RACORS
General Purpose Registers
Register Bits 15[14]13]12]11]10] 9[8[7] 6[5]4[3]2]1]0
Rn | An [Name
0 RO RO
1 R1 R1
2 R2 R2
3 R3 R3
4 R4 R4
5 R5 R5
6 R6 R6
7 R7 16 x 16-bit general purpose registers R7
8 0 R8 R8
9 1 R9 R9
10 2 RA RA
11 3 RB RB
12 | 4 RC RC
13 5 RD RD
14 6 RE RE
15 7 RF RF
Special Registers
Register Bits 15[14]13]12]11]10] 9[8[7]6[5]4[3]2]1]0
SRn Name 16 special registers
0 CC [Condition Codes [INJZ]O]C
1 CS |Control & Status IVPT | IS|IE[IR
2 LC |10-bit Loop Counter LC
4 uo Signed 10-bit (address) Update 0 uo
12 SA [Subroutine (return) Address SA
13 IA Interrupt (return) Address 1A
14 TA [Target Address (indirect jump) TA
15 ID [CoreID REV [IMA [ISA [FML=7
Register Fields
C Carry flag
(@] Overflow flag
cc Z Zero flag
N Negative flag
IR Interrupt, 0: not in an interrupt, 1: interrupt processing
cs IE Interrupt Enable, O: interrupts disabled, 1: interrupts enabled
IS Interrupt (enable) Shadow, used to save/restore IE when scie/rsie instructions are executed
IVTP Interrupt Vectors Table Pointer, defines the 11 MSBs [15:5] of the interrupt vector table start address
FML Core Family, 1: ecol6, 2: eco32, 4: sf32, 5: sf16, 6: sf18, 7: sf20,
D ISA ISA=1=h (base), 2 =d (dsp)
IMA Implementation Architeture, 1: | = light, 4: u = ultralight
REV Revision, starting with 1
3 Property of RACORS GmbH 04.12.2014

— Quick Reference Guide V1.0 sf20b
L

RACORS

Load/Store instructions

Operand Symbols Operand Addressing
DA11s [11-bit absolut data address, signed, 0x0000-0x03FF and 0xFCOQO0-OxFFFF
DO8g [8-bit data address offset, signed, -128-127, including zero
Rs register Rn (RO-RF) used as source operand - E_ = . g -
Rd register Rn (R0-RF), used as destination operand o E‘ Zlo|olo 8 8 :m SlEl+] . ;'é g
Rx register Rn (R0-RF), used as index operand el |E|z|<|(O]| x| gl= <+
An register An (R8-RF) used as indirect address Z |3 i Llelsl g2 SIS Ak
RGS register selection, may include R0-R7, R9-RD, SA gle|x|< <‘r << <‘.—’ é 5:0 & & é’:ﬁ & r|o
Mnemo Description Addressing Modes
Idbt load byte (8-bit) and zero-extend to 16 bits i R I I I I I
stbt store byte (8-bit) i B O I e
Idsh load short (16-bit) i I I I I
stsh store short (16-bit) i e e e e e
eda (16-bit effective data address) generation (Load/Store Addressing Modes)
DA11g 11-bit direct address, sighed eda = DA11g
(DO8g,An) indirect with 8-hit signed offset eda = An + DO8g
(Rx,An) indirect with scaled index eda = An + size*Rx, size = 1 (byte), 2 (short)
(An)+ indirect with post-increment eda = An, An += size, size = 1 (byte), 2 (short)
-(An) indirect with pre-decrement eda = An - size, size = 1 (byte), 2 (short), An = eda
(An)* indirect with post-update eda = An, An += UQ (special register)
For Idbt and stbt instructions register selections RGS can include registers R0-R7, RC and RD. For Idsh and stsh instructions register selections RGS can include
registers SA (subroutine address), R2-R7 and R9-RB.

4 Property of RACORS GmbH 04.12.2014

(73]

Quick Reference Guide V1.0

sf20b

RACORS
Flow Instructions
Operand Options Op.-Addr.
Implied no operands or operands are implicitly defined
10105 10-bit instruction address offset (20-bit word granularity), -512 to 511 instructions
10144 14-bit instruction address offset (20-bit word granularity), -8192 to 8191 instructions = 0
IA16y 16-bit absolut instruction address in 20-bit word granularity, 0x0000 to 0xFFFF % ‘u_? TIS|S
S Speculation, False (S=0) or True (S=1) E|<|o9o]o
Mnemo Description Ad.Mode
jump, jump-to-subroutine, return
jump jump *
jpsr jump to subroutine |
risr return from subroutine *
rtir return from interrupt *
unconditional branch
bral [branch always [<] |
conditional & unconditional branches
mnemo condition CND specified as logical equation of C=CC.C, O=CC.0,Z=CC.Zand N = CC.N
brnc branch if no carry CND = ~C *
brer branch if carry CND =C *
brno branch if no overflow CND =~0 *
brof branch if overflow CND =0 *
brnz branch if non zero CND =~Z *
brzr branch if zero CND=2Z *
brps branch if positive CND = ~N *
brng branch if negative CND =N *
brls branch if lower or same CND=C|Z *
brhi branch if higher CND = ~C & ~Z *
brlo branch if lower CND = (N & ~0) | (~N & O) *
brge branch if greater or equal CND = (N & O) | (~N & ~O) *
brle branch if lower or equal CND =Z| (N &~0O) | (~N & O) *
brgt branch if greater CND =~Z & (N & Q) | (~N & ~Q)) *
bric branch if loop counter is unequal zero LC-=1,CND=LC!=0 *
other
stie set interrupt enable, sets |IE bitin CS *
clie clear interrupt enable, clears |E bit in CS ¥
rsie restore interrupt enable, transfers IS bit of CS to IE bit of CS ¥
scie save and clear interrupt enable, transfers IE bit of CS to IS bit of CS, then clears IE *
stop stop, enter stopped (debug) state *
svpc save program counter (write to debug port) *
rspc restore program counter (read from debug port) *

Property of RACORS GmbH

04.12.2014

(.a’ Quick Reference Guide V1.0 sfe0b
RAC’DRS
Arithmetic Computation Instructions
Operand Field Elements Operand Addressin §
C8y 8-bit constant (Unigned) 0 to 255 -‘é‘_
C10g 10-bit constant (Signed) -512 to 511 - E:_ g
Cl6y 16-bit constant (Unsigned), 8 LSBs are not coded and are all zeros 0x0000 to OXxFF00 = 'nC:!_ n":’_ E = E g
Rs,Rs0,Rs1 |register Rn, used as source (Rs), source 0 (Rs0) or source 1 (Rs1) operand 005 33 8"’ %5 m ﬂuf)_ %5 g
Rd,Rb register Rn, used as destination (Rd) or as both source and destination (Rb) operand ojojojrjrjr|r|s
Mnemo Description Addressing Modes O
addt add to * * | %
addc add with carry, destination = source0 + sourcel + CC.C * |
adcf add carry flag, destination = source + CC.C * *
addh add to high word 5
subf subtract from, source0O from sourcel * x| *
subc subtract with carry, destination = sourcel - source0 - CC.C * |
sbcf subtract carry flag, destination = source - CC.C * *
comp compare (subtract source 0 from source 1) =L E L
cmpc compare with carry * *
cpcf compare carry flag (subtract CC.C from source) 5 L
negt negate *
absl absolute value 3
clzr count leading zeros *
sxbt sign extend byte 5
sxsh sign extend short *
micu multiply constant unsigned, 8*16 -> 24, store lower 16-bit of result in destination 5
mult multiply unsigned, 16*16 -> 32, store low word of result in destination *
mihu multiply high unsigned, 16*16 -> 32, store high word of result in destination 5
mlhs multiply high signed, 16*16 -> 32, store high word of result in destination *
6 Property of RACORS GmbH 04.12.2014

"y

Quick Reference Guide V1.0

sf20b

RACORS
Miscellaneous Instructions
Operand Options Operand Addressing %
BTI4,, SHC4, |4-bit bit index (Unsigned), 0 to 15, 4-bit shift count (Unsigned), 0 to 15 2
C8y 8-bit constant (Unsigned) 0 to 255 = _ncé_ g
C10y 10-bit constant (Unsigned), 0 to 1023 o< E = -nC:i '§
C10g 10-bit constant (Signed), -512 to 511, used with it sr C105,Un (n=0,1,2,3) 915 915 2% -nC:S_ é E |2 E =
Rs,Rs0,Rs1,Rd |register Rn, used as source (Rs), source 0 (Rs0), source 1 (Rs1) or destination (Rd) operand E E % 9? éf cg' %5 DU’-,. 2 nt/,_f %5 S :_%
SRs, SRd special register SRn, used as source (SRs) or destination (SRd) operand ojomjojojojOjaejrjrjon|r|jx|x]s
Mnemo Description Addressing Modes S)
Logic
andb logical and bit wise, also calculates parity of the result * * *
iorb logical inclusive or bit wise * *
xorb logical exclusive or bit wise *
invt invert *
Move
move move * =
mvsr move stack reference, adds constant C10g to R8 (stack pointer) and stores the result in Rd *
mfsr move from special register *
mtsr move to special register, with constant source and Un (U0-U3) destination the constant is signed * *
mfdp move from debug port, transfers the debug port input value to the destination operand *
mtdp move to debug port, transfers the source operand to the core's debug port *
Shift
shlz shift left with zero fill * *
shlf shift left with feedback (from MSB) * *
shru shift right unsigned * *
shrs shift right signed * *
Bit Manipulation
btst bit set * *
btcl bit clear * *
bttg bit toggle * *
btts bit test * * *
7 Property of RACORS GmbH 04.12.2014

(L)

RACORS

Quick Reference Guide V1.0

General Purpose Registers

sf20d

Register Bits

15/14[13[12[11]10] 98| 7|6 |5[4[3[2]1]0

Rn [RalAn] Name
0 RO RO
1 RA1 R1
2 R2 R2
S) R3 R3
4 |10 R4 R4
5 |1 R5 R5
6 |2 R6 R6
713 R7 16 x 16-bit general purpose registers R7
8 0 R8 R8
9 1 R9 R9
10 2 RA RA
11 3 RB RB
12 4 RC RC
13 5 RD RD
14 6 RE RE
15 7 RF RF
Special Registers
Register Bits 15/14[13[12[11]10] 98| 7|6 |5[4[3[2]1]0
SRn Name 16 special registers
0 CC |Condition Codes [N]Jz]o]cC
1 CS |Control & Status IVPT [IS[IE]IR
2 LC [10-bit Loop Counter [LC
S) EP |Extension Parameters [s] RND
4 uo Signed, 10-bit (address) Update O uo
5 U1 Signed, 10-bit (address) Update 1 U1
6 U2 Signed, 10-bit (address) Update 2 U2
7 U3 Signed, 10-bit (address) Update 3 9K
8 AEO |Accumulation Extension 0 AEOQ
9 AE1 |Accumulation Extension 1 AE1
10 AE2 |Accumulation Extension 2 AE2
11 AE3 |Accumulation Extension 3 AE3
12 SA |Subroutine (return) Address SA
13 1A Interrupt (return) Address 1A
14 TA |Target Address (indirect jump) TA
15 ID Core ID REV | IMA | ISA | FML=7
Register Fields
C Carry flag
o) Overflow flag
cc 4 Zero flag
N Negative flag
IVTP Interrupt Vectors Table Pointer, defines the 11 MSBs [15:5] of the interrupt vector table start address
cs IR Interrupt, 0: not in an interrupt, 1: interrupt processing
IE Interrupt Enable, 0: interrupts disabled, 1: interrupts enabled
IS Interrupt (enable) Shadow, used to save/restore IE when scie/rsie instructions are executed
EP RND Round control, 0: no round, 1-10 adds (1 << (RND+13)) to 32-bit multiply products
S Shift, left-shift control for the msnsd, mshsd, msasd and msssd instr., S=0: 1-bit, S=1: 2-bits
FML Core Family, 1. eco16, 2: eco32, 4: sf32, 5. sf16, 6: sf18, 7: sf20,
D ISA ISA =1 =Db (base), 2 =d (dsp)
IMA Implementation Architeture, 1: | = light, 4: u = ultralight
REV Revision, starting with 1

Property of RACORS GmbH

04.12.2014

Property of RACORS GmbH

(:’ Quick Reference Guide V1.0 sf20d
RAC’DRS
DSP ISA Extension Instructions
Operand Options Op. Adr.

DO5y 5-bit unsigned & scaled data address offset, 0, 2, 4, ..., 30 s | s
AU5¢ 5-bit signed & scaled data address update -16, -14, ... -2, 2, 4, ..., 14, 16 5 ‘0_:.- §
DA8y 8-bit unsigned & scaled direct address, 0x0000 - OxO0OFE - Q":’_ DU:J_ g ‘;;
Rs,Rs0,Rs1,Rd |[register Rn, used as source (Rs), source 0 (Rs0), source 1 (Rsl) or destination (Rd) operand ‘n_:r ’g i? ;} S:-
Ra accumulator register R4-R7 used as destination or both source and destination & s| 3 2 05_) ’g
An register An (R8-RF) used as indirect address %5 ﬂuf)_ 8 c|(2|<
Un update register U0-U3, sign-extended and added to An after the operand read from memory xlx|2[<|a|Z

Mnemo Description Addressing Modes
addsd left shift source operand 1 by one bit and add S
subsd left shift source operand 1 by one bit and subtract 5
clipd clip signed to 0xC000 / Ox3FFF boundaries *
clshd clip and shift, same as clip but with a 1-bit left shift after the clipping 5
clubd clip to unsigned byte, if < 0 clips to 0, if > OxFF clips to OxXFF *
mlhsd multiply signed, 16*16 -> 32, store high word of result in destination o
minsd multiply & negate signed, 16*16 -> 32, store high word of result in destination o e I
macsd multiply & accumulate signed, 16*16 -> 32, add high word of result to destination i
massd multiply & subtract signed, 16*16 -> 32, subtract high word of result from destination o e I I
mshsd multiply & left-shift signed, 16*16 -> 32, store high word of result in destination i
msnsd multiply, left-shift & negate signed, 16*16 -> 32, store high word of result in destination o I I
msasd multiply, left-shift signed & accumulate, 16*16 -> 32, add high word of result to destination i
msssd multiply, left-shift signed & subtract, 16*16 -> 32, subtract high word of result from destination o I I

04.12.2014

