

Revision 1.0
22 December 2014

Author: Martin Raubuch

‘readme’ notes

sf20
evaluation package

Property of RACORS GmbH
info@racors.com

 sf20 eval1 readme 22.12.2014

2 Property of RACORS GmbH Rev. 1.0

Revision History
Revision Date

1.0 22Dec2014 Initial Revision

Table of contents
1 Introduction .. 3

1.1 Purpose .. 3

1.2 License ... 3

1.3 Installation .. 3

1.4 Content ... 3

2 Tutorial .. 4

2.1 Overview ... 4

2.2 The dcs simulator ... 4

2.3 Processor models ... 4

2.4 The example project ... 5

2.5 Running simulations ... 5

2.6 Creating new software projects... 6

 sf20 eval1 readme 22.12.2014

3 Property of RACORS GmbH Rev. 1.0

1 Introduction

1.1 Purpose
This evaluation package is intended for development engineers that want to take a look at the RACORS sf20

family of 16-bit microprocessors. It contains tools to build and test small software projects for the sf20b
(base) ISA (Instruction Set Architecture).
The package also contains synthesizable RTL code of the sf20bu core, the ultra-light implementation of the
sf20b ISA which may be used free of charge for commercial and non-commercial applications.
The second chapter is a tutorial that shows how to use the tools to create and test software projects.

1.2 License
This free of charge package is provided as is with no warranty or support. Licensing details are described in
the license.txt file which is part of the package. The file is located in the same directory as this readme file.

1.3 Installation
The package is available for two platforms:

1. cygwin, a Linux environment for PCs with Windows OS
2. Linux, for PCs with native Linux OS

Only differences are the executables in the eval1/bin directory, all other files are identical. After unpacking
the tar ball copy the executables from the eval1/bin directory to your usr/bin directory for convenient
use from any shell window. Of course it’s also possible to run the executables by specifying their file paths
directly. In this case copying to usr/bin is not required.

1.4 Content
The following table lists all files of the package with their location and a short description.

File location description
readme.pdf

eval1
this readme file

license.txt licensing terms

sf20_qrg_revxx.pdf

eval1/docs

sf20 quick reference guide, xx = revision

sf20bISA_Revxx.pdf sf20b ISA reference manual, xx = revision

sf20buIMA_Revxx.pdf sf20bu IMA (Implementation) reference manual

sf20asmRevxx.pdf sf20 assembler user manual, xx = revision

dcsliteRevxx.pdf dcslite simulator user manual, xx = revision

sf20asm

eval1/bin

sf20 assembler, executable

eval1b sf20b ISS (Instruction Set Simulator), executable

eval1bu sf20bu cycle accurate simulator, executable

eval1bl sf20bl cycle accurate simulator, executable

eval1.asm

eval1/projects/eval1/sf20b

example project top-level assembly

eval1.h example project header, definitions

main.asm

example project assembly sources intdiv.asm

stdout.asm

dcscontrol simulator control file

dcscontrol eval1/projects/eval1/sf20bu simulator control file

dcscontrol eval1/projects/eval1/sf20bl simulator control file

sf20bu.v eval1/rtl synthesizable Verilog of the sf20bu

 sf20 eval1 readme 22.12.2014

4 Property of RACORS GmbH Rev. 1.0

2 Tutorial

2.1 Overview
This chapter shows how to create software projects for the sf20b architecture using the sf20asm standalone
assembler and how to test/verify the software using the dcs simulator. The package contains a small
example software project called eval1.

2.2 The dcs simulator
All RACORS processors and hardware IPs have been developed with the dcs modeling and simulation tool,
a RACORS proprietary tool. The tool has been developed specifically for processor development and for
hardware/software co-design. Dis-assembled instructions can be included in simulation listings which makes
it also very useful for software development and verification.
This package contains a stripped down version of dcs called dcs-lite. It includes all features to simulate
existing circuits and is primarily intended for software development and verification. The features for
hardware development have been removed. A dcs-lite user manual can be found in the eval1/docs
folder.
Hardware models for dcs are written in C language and linked with the simulation engine to generate
simulator executables. Each unique circuit requires a separate simulator executable which contains the
circuit model.

2.3 Processor models
The package contains three simulator executables in eval1/bin, one for ISS simulations of the sf20b ISA
and one for each of the sf20bu and sf20bl processor implementations. The contained circuit models have the
following common features:

• 64kx20-bit instruction memory mapped to 0x0000-0xFFFF of the instruction address space (covers
entire space)

• 63kBytes data memory mapped to 0x0000-0xFBFF of the data address space, the remaining
1kBytes from 0xFC00-0xFFFF are reserved for peripherals

• A stdout test bench peripheral to print text strings to the simulation shell window

• A test bench peripheral to print the current simulation cycle to the simulation shell window
The processor models are different between the executables but are fully software compatible because all
three support the sf20b ISA.

sf20b ISS (Instruction Set Simulation) model
This ISS model implements the sf20b ISA but no features of a hardware implementation. It is the functional
and performance reference for hardware implementations.
Functional reference means that program code that is executed on a hardware implementation (CSA model)
of the sf20b ISA must generate the same results as the ISS model running this program code.
To be suitable as performance reference the ISS model’s IPC (Instructions Per Cycle) is 1. All instructions
are executed in one cycle except load/store instructions with multiple source/destination registers which take
one cycle per register to be close to implementation realism.
ISS simulations are very fast (in the order of 10M cycles/s) and generate bit true results. They are well suited
for software development and functional verification. Performance (cycle counts) reflects the IPC of 1 and
cannot be used directly as performance indicator of a hardware implementation. However correlating with
the average IPC of the target implementation provides a good estimate of the expected real life performance
of hardware implementations.

sf20bu and sf20bl CSA (Cycle & Structure Accurate) models
These models reflect the actual hardware architecture and implementation of the respective processor.
Synthesizable Verilog code of an implementation is derived from its corresponding CSA model and is verified
against this model by co-simulation and cycle-by-cycle matching of all IOs, internal signals and registers.
In software development CSA simulations can be used to measure and optimize performance. Measurement
is 100% accurate because the CSA models are cycle accurate. Simulation results of critical code sequences

 sf20 eval1 readme 22.12.2014

5 Property of RACORS GmbH Rev. 1.0

can be used to analyze if cycles are lost e.g. due to data dependencies and if performance can be improved
by instruction re-ordering or replacement.

2.4 The example project
The project is located at eval1/projects/eval1. This directory contains three sub-directories one for
each of the sf20b, sf20bu and sf20bl based models and associated simulator executables in eval1/bin.
The three sub-directories have different simulator control files to reference processor registers for list-vector
generation and memories.
The assembly sources of the example project are located in the sf20b subdirectory. eval1.asm is the top-
level. Most of the example source code is in main.asm. The program calls routines in stdout.asm to print
messages to the screen. Header file eval1.h defines addresses of data objects. File intdiv.asm contains
an integer divide routine which is used by the number-to-text conversion routine in main.asm. The example
program performs the following actions:

• Prints “Hello World” to the screen (simulation shell window)
• Calculates the prime numbers from 1 to 1000 using the “Sieve of Eratosthenes” algorithm
• Prints the prime numbers found
• Prints “Program End”

2.5 Running simulations

Generating executable code from the assembly sources
This is done by running the assembler (executable in eval1/bin) in directory
eval1/projects/eval1/sf20b with eval1.asm as argument. You may want to have a look at the
generated list file eval1.log. The generated code is in eval1.cod which is a text readable file as well.
When dcs-lite is started it loads the instruction and data memories of the simulation model with the code
from eval1.cod. The dcs-lite control file dcscontrol contains memory load commands that references
the eval1.cod file.

ISS simulation of the example program
In directory eval1/projects/eval1/sf20b run the simulator eval1b (executable in eval1/bin) with
arguments 49000 a. This runs the simulator for 49000 cycles and generates format a list vectors. The
example program should print messages on the screen as described earlier. The “Program End” message is
printed in cycle 48107.
List vectors are written into file listfile one line per vector/cycle. The format is defined in file
dcscontrol and has the following elements from left to right:

element

Cycle number

Disassembled instruction

Instruction Address (hex)

Registers R0, R1, … RF (hex)

Special registers CC, CS, LC, U0, SA, IA, TA (hex)

In ISS simulations the effect of each instruction (updating of destination operands) happens in the cycle
where the instruction is listed. Generated file memdump shows memory contents at the end of the simulation
as defined in dcscontrol.

sf20bu CSA simulation of the example program
In directory eval1/projects/eval1/sf20bu run the simulator eval1bu (executable in eval1/bin)
with arguments 94000 a. This runs the simulator for 94000 cycles and generates format a list vectors. The
instruction code is loaded from the .cod file in the neighboring sf20b directory to make sure that exactly the
same code is executed as with the ISS simulation.
The same messages are printed as with the ISS simulation. The “Program End” message is printed in cycle
93454 which shows that the sf20bu implementation takes about twice the cycles as the theoretical ISS model
to execute the same program.

 sf20 eval1 readme 22.12.2014

6 Property of RACORS GmbH Rev. 1.0

The list vectors in listfile have almost the same format as the ISS list vectors. A minor difference is the
printing of the flags of special register CS as a separate field in binary format following register CC.
Otherwise the main difference is the extra marker character in front of each disassembled instruction. It
indicates the execution status of the attached instruction, e.g. ‘*’ means final execution cycle, ‘-‘ means
stalled and ‘0’,’1’,’2’, …. indicate intermediate cycles of multi-cycle instructions.
In the memory listing file memdump a major difference to the ISS simulation is that undefined memory
locations are printed as XX characters. Memory locations are defined only if they are loaded from a .cod file
when the simulator is started or if the processor writes a defined value to them.

sf20bl CSA simulation of the example program
In directory eval1/projects/eval1/sf20bl run the simulator eval1bl (executable in eval1/bin)
with arguments 60000 a. This runs the simulator for 60000 cycles and generates format a list vectors. As
with the sf20bu simulation the instruction code is loaded from the .cod file in the neighboring sf20b
directory.
The same messages are printed as with the ISS simulation. The “Program End” message is printed in cycle
58893 which shows that the sf20bl implementation is somewhat slower than the theoretical ISS model but
significantly faster than the sf20bu.
The register elements of the list vectors in listfile have the same format as the ISS list vectors. Main
difference compared to the ISS and sf20bu simulations is the printing of two disassembled instructions per
vector and line. This is because the sf20bl has decoupled flow-control and computation/load/store execution
units and it is possible that two instructions (one flow + one non-flow) are executed in the same cycle.
The marker characters in front of disassembled instructions indicate the execution status but have somewhat
different meaning compared to the sf20bu simulation except for the ‘*’ and ‘-‘ markers which indicate
executed and stalled instructions respectively. Some extra markers are used in conjunction with branch
speculation. Ignored ‘i’ is used as marker for conditional branch instructions that are speculatively not
executed. Instructions that are stalled in their final execution stage because they have been fetched
speculatively and the associated branch condition is not resolved yet have a (?) marker. When a branch
condition is resolved showing that the speculation was wrong a ‘*’ marker followed by “resume” is printed to
indicate that instruction fetching and execution continues with the correct branch alternative. The execution
pipeline is flushed and speculatively fetched instructions in the final execution stage are aborted which is
indicated by a ‘!’ marker.

2.6 Creating new software projects
Copy the example project directory eval1/projects/eval1 and rename it to the desired project name.
You may also want to rename the assembly source files. The top level assembly source file is used as
argument of the assembler and contains “include” directives for all other source files of the project. The
assembler generated .cod file has the same name as the top-level file, but with a .cod extension. It is
referenced in the dcscontrol simulator control files (MEMLD commands), the file names there must be
changed to the new top-level file name.

