

Base ISA Reference Manual

Revision 0.9
18 December 2014

Author: Martin Raubuch

Family of
16-bit microprocessors

sf20

Property of RACORS GmbH

sf20 base (b) ISA Reference Manual 18.12.2014

2 Property of RACORS GmbH Rev. 0.9

Revision History
Revision Date
0.9 18Dec2014 First version

sf20 base (b) ISA Reference Manual 18.12.2014

3 Property of RACORS GmbH Rev. 0.9

Table of contents
1 Overview ... 4

1.1 Introduction ... 4

1.2 Feature Summery ... 4

1.3 Scope of this manual .. 4

1.4 Structure of this manual .. 4

2 Definitions .. 6

2.1 Register Specifications ... 6

2.2 Constant Specifications .. 6

2.3 Miscellaneous definitions .. 7

3 Programming model .. 8

3.1 Instruction address space ... 8

3.2 Data address space .. 8

3.3 Registers .. 8

4 Instruction set summery ... 12

4.1 Addressing modes .. 12

4.2 Instructions ... 13

5 Reset, Interrupts & Debug-Support .. 16

5.1 Reset .. 16

5.2 Interrupts .. 16

5.3 Debug Support.. 17

6 Operand Types .. 20

6.1 Legend .. 20

6.2 Constant operand types .. 20

6.3 Register operand types ... 22

6.4 Data memory operand addressing .. 25

6.5 Instruction addressing ... 28

7 Load, store and move instructions ... 29

7.1 Common properties .. 29

7.2 Legend .. 29

7.3 Instruction details .. 30

8 Computation instructions ... 33

8.1 Common properties .. 33

8.2 Legend .. 33

8.3 Arithmetic Instructions .. 34

8.4 Logic Instructions .. 38

8.5 Shift Instructions ... 39

8.6 Bit manipulation instructions ... 41

8.7 Multiply Instructions .. 42

9 Flow control instructions .. 43

9.1 Common properties .. 43

9.2 Legend .. 43

9.3 Instruction details .. 44

Instruction Coding .. 48

sf20 base (b) ISA Reference Manual 18.12.2014

4 Property of RACORS GmbH Rev. 0.9

1 Overview

1.1 Introduction
The sf20 family of 16-bit microprocessors is targeted at embedded control applications that have high
performance requirements and are satisfied with a direct addressable data space of 64kBytes. With 20-bit
instruction coding excellent code efficiency is achieved for a fixed length architecture with 16 general
purpose registers. The sf20 family is very well suited for FPGAs where 20-bit wide memories can be built
efficiently.
Besides the base (b) ISA defined in this manual the family includes a (d) DSP ISA extension for 16-bit DSP
applications. The (d) DSP ISA extension is defined in a separate manual.
The base ISA is a 16-bit general purpose load/store architecture. Accesses to memory data operands and
computations are decoupled by using separate instructions. Memory operands are accessed by load/store
instructions exclusively. Computation instructions have register or constant source operands and register
destination operands. This concept supports the implementation of variants with different pipeline structures
and sizes. High level language compilers can schedule instructions in an optimal order for efficient execution
with minimal stalls and pipeline bubbles.

1.2 Feature Summery

The following list summarizes the sf20b’s main features
• Load/store architecture
• Harvard architecture with separate instruction and data address spaces
• 64kBytes data address space
• 64k x 20-bit instruction address space
• Fixed length 20-bit instruction coding
• 16 x 16-bit general purpose registers and 8 special registers
• Support for 8-bit and 16-bit signed and unsigned integer data types
• Instructions to support higher precision operands > 16 bits
• Rich set of load/store addressing modes
• Bit manipulation & test instructions: set, clear, toggle & test
• 16*16 multiply instructions with either 16-bit high word or 16-bit low word results
• 16 interrupts with programmable start addresses
• Flexible debug support for application optimized debug concepts
• 10-bit loop counter

1.3 Scope of this manual
This sf20 base ISA reference manual contains the following detailed descriptions:
• Instruction set
• Instruction coding
• Size and endianess of instruction and data address spaces
• Registers of the programming model (user registers)
• Register and memory operand types
• Register and memory operand addressing modes
• Interrupt concept
• Debugging concept
Implementation specific details such as I/O signals, cycle by cycle timing of instructions, operand
dependencies and latencies are not part of this ISA reference manual. These details are described in the
IMA (Implementation Architecture) reference manual of each implementation.

1.4 Structure of this manual
Below are brief descriptions of the following chapters of this manual:
Definitions , acronym definitions for registers, constants and other sf20 base ISA specific items that are

sf20 base (b) ISA Reference Manual 18.12.2014

5 Property of RACORS GmbH Rev. 0.9

used in the remaining chapters of the document.
Programming model , describes the address spaces and user registers
Instruction set summery , brief descriptions of addressing modes and instructions divided into functional
groups
Reset, Interrupts & Debug Support , defines the reset state, interrupt concept and software debug support
concept.
Operand Types , defines bit accurate details of how operands are generated or calculated, defines operand
addressing modes
Load, store and move instructions , defines bit accurate details of the operations and addressing modes of
these instructions
Computation instructions , defines bit accurate details of the operations and addressing modes of these
instructions
Flow control instructions , defines bit accurate details of the operations and addressing modes of these
instructions
Instruction Coding, tables with instruction coding details in alphabetical order

sf20 base (b) ISA Reference Manual 18.12.2014

6 Property of RACORS GmbH Rev. 0.9

2 Definitions

2.1 Register Specifications
This section defines the variables and notations used to specify register operands in addressing mode and
instruction descriptions.

Rn one of the 16 general purpose registers R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, RA, RB,
RC, RD, RE or RF.

Rs one of registers Rn used as source operand, Rs is used in addressing modes with a single
register source operand

Rs0 one of registers Rn used as source operand 0, Rs0 specifies the first source operand
(assembly language operand fields) in addressing modes with two source operands; for non-
commutative operations like subtract or compare Rs0 is the operand on the right side of the
operator, e.g. for subtract and compare instructions the operation is Rs1 - Rs0. If used with
indirect shift or bit manipulation instructions Rs0 contains the shift-count, or bit-index
operands.

Rs1 one of registers Rn used as source operand 1, Rs1 specifies the second source operand
(assembly language operand fields) in addressing modes with two source operands; for non-
commutative operations like subtract or compare Rs1 is the operand on the left side of the
operator, e.g. for subtract and compare instructions the operation is Rs1 - Rs0.

Rd one of registers Rn used as destination operand.

Rb one of registers Rn used as both source and destination operand. In addressing modes with
two source operands Rb is source operand 1.

Rx one of registers Rn used as index in the indirect data memory addressing mode with scaled
index. The effective address of the data memory access is Rx shifted left by the size of the
operand and added to the content of the indirect address register An .

SRn one of the eight special registers CC, CS, LC, U0, SA, IA, TA or ID.

SRs one of the special registers SRn used as source operand

SRd one of the special registers SRn used as destination operand

An one of the 8 high-order general purpose registers R8, R9, RA, RB, RC, RD, RE or RF used
as indirect memory address in addressing modes with memory source or destination
operands.

RGS specifies a selection of registers for load and store instructions with multiple source or
destination operands; the selection can include one or more of the following registers: R0,
R1, R2, R3, R4, R5, R6, R7, R9, RA, RB, RC, RD, SA. A maximum of 10 registers can be
selected, selection options depend on the memory operand size.

2.2 Constant Specifications
This section defines the acronyms and notations used to specify constant operands in addressing mode and
instruction descriptions.
Acronyms for constants with a value range have an optional one or two-character suffix. The first character
has the following meaning: U (Unsigned) or S (Signed). The second character N means: Not including zero.

C8U 8-bit constant (unsigned,) used as source operand of computation instructions; legal values
are from 0 to 255.

C10U 10-bit constant (unsigned,) used as source operand of move to secial register instructions;
legal values are from 0 to 1023.

C10S 10-bit constant (signed) used as source operand of move, move stack reference, compare
and move to special register instructions; legal values are from -512 to 511.

C16 16-bit constant used as source operand with the addh instruction, legal values are from
0x0000 to 0xFF00; bits [7:0] are not coded and are always zero.

DO8S 8-bit data address offset (signed) used in an indirect memory addressing mode. Legal values
are from -128 to 127.

sf20 base (b) ISA Reference Manual 18.12.2014

7 Property of RACORS GmbH Rev. 0.9

DA11S 11-bit direct data address (signed) used in the direct memory addressing mode, Legal values
are from 0 to 0x3FF and from 0xFC00 to 0xFFFF.

SHC4 4-bit shift count used in addressing modes for shift instructions. Legal values are from 0 to
15

BTI4 4-bit bit index used in addressing modes for bit-manipulation instructions, legal values are
from 0 to 15

IO10S 10-bit instruction address offset (signed) used with branch instructions. Legal values are
from -512 to 511

IO14S 14-bit instruction address offset (signed) used with branch instructions. Legal values are
from -8192 to 8191

IA16 16-bit direct instruction address; used in an addressing mode for jump to subroutine
instructions. Legal values are from 0x0000 to 0xFFFF.

2.3 Miscellaneous definitions
opcode operation code of an instruction; contains sub codes that specify the instruction type and the

operands. The sf20 has fixed length 20-bit opcodes stored in the instruction memory

eda effective data address, a 16-bit byte address that points to an operand in the data address
space, eda addresses need not be aligned on the size of the operand.

eia effective instruction address, a 16-bit word address that points to a 20-bit opcode word in
the instruction address space.

sf20 base (b) ISA Reference Manual 18.12.2014

8 Property of RACORS GmbH Rev. 0.9

3 Programming model

3.1 Instruction address space

3.1.1 Size and addressing scheme
The sf20 processors have a 65536 x 20-bit instruction address space. Instruction addresses are 16 bits and
point to 20-bit opcode words in the instruction memory.

3.1.2 Endianess
The sf20 implements a little endian scheme to map 20-bit opcodes to memory words. In case the instruction
interface is wider than 20 bits (e.g. 40-bit or wider in super-scalar implementations) the lower address is
mapped to the lower bits of the memory word.

3.2 Data address space

3.2.1 Size and addressing scheme
The sf20 processors have a 64kBytes data address space. Data addresses are 16 bits and point to byte
locations in the data memory. The base ISA supports byte (8-bit) and short (16-bit) memory operands.

3.2.2 Operand types
Operands accessed in the data address space can be unsigned or signed (2’s complement). Inside the
processor all arithmetic is done on 16-bit operands. Byte operands are zero-extended to 16 bits when loaded
from memory into one of the general purpose registers. When a signed byte operand is loaded from memory
an sxbt (sign-extend byte) instruction must follow to make sure the register value represents the correct 16-
bit 2’s complement format of the signed byte value. When register operands are stored to memory they are
truncated to the size of the destination operand. When storing a byte value to memory the 8 MSBs of the
source register are discarded.

3.2.3 Alignment
The sf20 processors do not handle misaligned memory operands internally. For 16-bit accesses the LSB is
ignored. However the full data space address including the LSB is output to the data bus with every access
regardless of the operand size. If required by an application misaligned operands can be supported by the
memory controller. The processor’s data bus signals provide both the size of the access and the full byte
address.

3.2.4 Endianess
The sf20 implements a little endian scheme to map 8-bit and 16-bit data operands to memory words.

3.2.5 Summery table
The table below illustrates the mapping of data operands into 16-bit memory words. All operands are aligned
to memory words and to their own size.

16-bit Memory words 3 2 1 0
Memory addresses n+6 n+4 n+2 n
Short (16-bit) operands 3 2 1 0
Short operands addresses n+6 n+4 n+2 n
Byte (8-bit) operands 7 6 5 4 3 2 1 0
Byte operands addresses n+7 n+6 n+5 n+4 n+3 n+2 n+1 n

3.3 Registers

3.3.1 Terminology
Register values are represented with the LSB at the right most bit position and the MSB at the left most bit
position. For an n-bit register the LSB is bit number 0 and the MSB is bit number n-1.

sf20 base (b) ISA Reference Manual 18.12.2014

9 Property of RACORS GmbH Rev. 0.9

If a register contains multiple named bits or bit-fields then these individual bits or bit-fields are referenced by
the register name followed by a ‘.’ character as separator and then followed by the name of the named bit or
bit-field as shown below:
<register name>.<bit or bit field name>
For registers that contain a single named bit-field this bit-field has the same name as the register. For
example, special register LC contains a single 10-bit bit-field with the name LC.

3.3.2 sf20 Registers

3.3.3 Register Details
The sf20 has two register spaces referred to as Rn (General Purpose Registers) and SRn (Special
Registers). Individual registers of these spaces are addressed by 4-bit fields in instruction opcodes. The 8
high-order general purpose registers are referred to as An (address registers) and are a logical sub-group of
the general purpose register Rn; registers of the An group can be used as indirect address and are
addressed by 3-bit fields in instruction opcodes.
The general purpose registers Rn can be used as source or destination operands of any load/store/move
instructions and of most computation instructions.

1 3 5 7 9 15 4 6 0 2 8 10 12 14 13 11

R0

R7

R6

R5

R4

R3

R2

R1

R0 0

Rn

An

General Purpose Registers

1 3 5 7 9 15 4 6 0 2 8 10 12 14 13 11

C

LC

U0

SA

IA

TA

ID

TA

IA

SA

U0

LC

CS

CC 0

1

2

4

12

13

14

15

SRn

Special Registers

O Z N reserved

IR

reserved

IVPT

FML = 7 ISA IMA REV

IE IS

R1

R2

R3

R4

R5

R6

R7

R8

R9

RA

RB

RC

RD

RE

RF

R8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R9

RA

RB

RC

RD

RE

RF

0

1

2

3

4

5

6

7

res.

reserved

sf20 base (b) ISA Reference Manual 18.12.2014

10 Property of RACORS GmbH Rev. 0.9

The special registers SRn have dedicated functions and are implicitly used as source and/or destination of
certain instructions. Beyond these dedicated functions they cannot be used as source or destination of
computation instruction. Dedicated move instructions are available to transfer values from a general purpose
register and vice versa. The SA special register can be source or destination of load/store instructions (as
part of a register selection).
The table below summarizes the sf20 register properties. The paragraphs following the table provide
detailed information of register groups and individual registers.
 R0- RF CC CS LC U0 SA IA TA ID

can be source or destination of computation instr. yes no no no no no no no no
can be used as source of a move instruction yes yes yes yes yes yes yes yes yes
can be used as destination of a move instruction yes yes yes yes yes yes yes yes no
can be used as indirect data address R8-RF no no no no no no no no
can be used as source/dest. of load/store yes no no no no yes no no no
can be used as indirect memory address index yes no no no no no no no no
can be part of an RGS (Register Selection) some no no no no yes no no no
can be moved directly to the debug port yes no no no no no no no no
can be loaded directly from the debug port yes no no no no no no no no

R0-RF Sixteen 16-bit general purpose registers intended for computation operands
CC Condition Code; this 4-bit register contains the condition code flags C,O,Z and N.

CC is an implicit source operand of conditional branch instructions; CC is an implicit
destination operand of some selected computation instruction. The rules of how
these instructions update the flags in CC are part of the detailed descriptions of
these instructions; CC cannot be used as source or destination of memory
load/store instructions; a hidden shadow register exists to save CC when an
interrupt is started and to restore the original state of CC at the end of an interrupt

CC.C Carry flag; the C flag is set by add/subtract/compare arithmetic instructions that
update the CC register if a carry occurs from bit 15 to bit 16 and is cleared
otherwise. Most other instructions that update the CC register clear the carry flag. A
special case is the andb (logic and) instruction. It updates the CC.C bit with the
parity of the operation result. The flag is set in case of odd parity and is cleared in
case of even parity.

CC.O Overflow flag; the O flag is set by add/subtract/compare arithmetic instructions that
update the CC register if an arithmetic overflow occurs from bit 15 to bit 16 and is
cleared otherwise. For arithmetic overflow generation the source and destination
operands are treated as signed 2’s complement numbers. Most other instructions
that update the CC register clear the overflow flag. A special case is the andb (logic
and) instruction. It sets the CC.O bit if the result of the operation has odd parity and
if the CC.C bit is set from a preceding instruction.

CC.Z Zero flag; the Z flag is set by instructions that update the CC register if the 16-bit
result of the operation is zero (all 16 bits zero) and is cleared otherwise.

CC.N Negative flag; the N flag is set by instructions that update the CC register if the 16-
bit result of the operation is negative (bit 15 set) and is cleared otherwise.

CS Control and Status; this 16-bit register contains a number of control and status flags
and also the pointer to the interrupt vector table in the data address space; when CS
is used as destination register of move instructions only the IVTP field is updated
with the corresponding bits of the destination operand the IR, IE and IS flags remain
unchanged

CS.IR Interrupt status flag; this flag is set when the sf20 enters an interrupt service routine
and is cleared when the processor exits an interrupt service routine.

CS.IE Interrupt Enable; this flag enables or disables interrupts; interrupt requests are
acknowledged only if IE is set.

CS.IS Interrupt enable Save bit; this flag saves a copy of CS.IE when a scie (save and
clear interrupt enable) instruction is executed. Execution of an rsie (restore
interrupt enable) instruction copies CS.IS back to CS.IE. The IS bit together with the
scie and rsie instructions are used to temporarily disable interrupts and then
restore the original interrupt enable state.

CS.IVTP Interrupt Vectors Table Pointer; this 11-bit field defines the most significant bits of
the 16-bit start address of the interrupt vector table in the data address space. The
table is aligned on a 32 bytes boundary. The five LSBs of the 16-bit table address

sf20 base (b) ISA Reference Manual 18.12.2014

11 Property of RACORS GmbH Rev. 0.9

are all zeros and are not contained in the CS register. When the sf20 starts an
interrupt service routine it fetches the start address of the routine from the table
pointed to by IVTP

LC 10-bit loop counter; used as loop counter with the brlc (loop counter branch)
instruction to improve code density and performance of inner loops

U0 10-bit (address) update 0; used with the (An)* addressing mode for load/store
instructions. With this addressing mode the U0 register is sign-extenden and added
to the indirect address register after the memory access

SA 16-bit subroutine return address; when a jpsr (jump to subroutine) instruction is
executed the return address (address of the next instruction following the jpsr
instruction) is stored in SA; when an rtsr (return from subroutine) instruction is
executed SA is used as return address;

IA 16-bit interrupt return address; when an interrupt is started the return address
(address of the next instruction following the last instruction executed before the
interrupt) is stored in IA; when an rtir (return from interrupt) instruction is executed
IA is used as return address;

TA 16-bit target address; used as instruction address for indirect jump and jump to
subroutine instructions;

ID Core ID; this register provides a 16-bit identification code of the processor divided
into four separate 4-bit fields; ID is a read-only register; writing to ID has no effect

ID.FML Family; this 4-bit code identifies the core family. The code for the sf20 is 7; this code
is to distinguish the processor from other architectures e.g. from processors of the
eco32, eco16, sf16 and sf32 families.

ID.ISA Instruction Set Architecture; this 4-bit code identifies the processor’s ISA; the
following ISA codes are defined for the sf20: 1 = base (b), 2 = dsp (d)

ID.IMA Implementation Architecture; this 4-bit code identifies the hardware implementation
architecture of the processor, the following codes are defined: 1 = light (l), 2 =
performance (p), 3 = superscalar (s), 4 = ultra-light (u); the IMA code 0 is used for
the ISS (Instruction Set Simulation) reference model of an ISA, which is not an
actual (hardware) implementation

ID.REV Revision; this is the 4-bit revision code; the first revision is 1. A value of zero is
illegal; the revision number is relative to the core type, IMA and ISA; this means that
processors with different IMA, ISA or core type can have the same REV code

3.3.4 Hidden Registers
The sf20 base ISA has one additional hidden registers CCS. Hidden registers are a mandatory part of the
programming model but are not contained in the Rn or SRn groups. For easy distinction from the Rn and
SRn registers hidden register names are printed in italic letters. The following paragraph is a detailed
description of the hidden register.

CCS 4-bit Condition Code Shadow register; this register is used to save the state of the
CC register when an interrupt is started; at the end of interrupt service routines
(execution of an rtir instruction) CC is restored from CCS

sf20 base (b) ISA Reference Manual 18.12.2014

12 Property of RACORS GmbH Rev. 0.9

4 Instruction set summery

4.1 Addressing modes
This section provides short descriptions of the base ISA addressing modes. The term “register” stands for a
general purpose register of the Rn group.

4.1.1 Data memory addressing modes
These addressing modes are used by load and store instructions to determine the eda of the memory source
(load) or destination (store) operand(s) and an optional update operation of an indirect address register.

DA11S 11-bit absolute, signed, scaled data address
(DO8S,An) Indirect data address with 8-bit signed offset
(Rx,An) Indirect data address with scaled index
 (An)+ Indirect data address with scaled post-increment
-(An) Indirect data address with scaled pre-decrement
(An)* Indirect data address with post-update

4.1.2 Registers only addressing modes
Rs Single register, Rs = source operand
Rd Single register, Rd = destination operand
Rs,Rd Dual registers, Rs = source operand, Rd = destination operand
Rs0,Rs1 Dual registers, Rs0 = source operand 0, Rs1 = source operand 1
SRs,Rd Dual registers, SRs = source operand, Rd = destination operand
Rs,SRd Dual registers, Rs = source operand, SRd = destination operand
Rs0,Rs1,Rd Triadic registers, Rs0 = source operands 0, Rs1 = source operand 1, Rd =

destination operand

4.1.3 Registers and constants addressing modes
C8U,Rb Constant and single register, C8U = source operand 0, Rb = source operand 1 and

destination operand
C10S,Rs1 Constant and single register, C10S = source operand 0, Rs1 = source operand 1
C10S,Rd Constant and single register, C10S = source operand, Rd = destination operand
C10U,SRd Constant and special register, C10U = source operand 0, SRd = destination operand
C10s,SRd Constant and special register, C10s = source operand 0, SRd = destination operand
C16,Rb Constant and single register, C16 = source operand 0, Rb = source operand 1 and

destination operand
SHC4,Rs1,Rd Constant and dual registers, SHC4 = source operand 0, Rs1 = source operand 1,

Rd = destination operand
BTi4,Rs1,Rd Constant and dual registers, BTI4 = source operand 0, Rs1 = source operand 1, Rd

= destination operand
BTI4,Rs1 Constant and single register, BTI4 = source operand 0, Rs1 = source operand 1

4.1.4 Instruction memory addressing modes
IA16 16-bit absolute instruction address
IO14S 14-bit signed instruction address offset
IO10S 10-bit signed instruction address offset
IO10S,S 10-bit signed instruction address offset with speculation, the speculation type S

determines if the branch speculation is for condition true or condition false

4.1.5 Miscellaneous addressing modes
implied operands are implicitly defined, there are two instruction categories: the first

category (interrupt enable, address select) uses flags of special register CS as
source and destination operands; for the second category (jump , jpsr) eia = TA.

sf20 base (b) ISA Reference Manual 18.12.2014

13 Property of RACORS GmbH Rev. 0.9

4.2 Instructions
This section is a summary of the base ISA instructions divided into functional groups. For each group the
contained instructions are listed followed by a table with the available addressing modes. Instruction lists
have the instruction mnemonic (used in assembly language) on the left side followed by a brief, single line
description. In these descriptions the term “register” stands for a general purpose register Rn.
In the addressing mode tables cells with available addressing modes are marked with an X and cells with
non-available combinations of instructions and addressing modes are grayed out. Groups containing
instructions that update the condition code flags have an additional row at the bottom of the table.
Instructions that update the condition flags in the condition code register CC are marked with a ‘*’ in this row.

4.2.1 Load, Store
ldbt load byte (8-bit word) or multiple bytes from memory and zero-extend to 16 bits
ldsh load short (16-bit word) or multiple shorts from memory
stbt store byte (8-bit) or multiple bytes to memory
stsh store short (16-bit) or multiple shorts to memory

 ldbt ldsh stbt stsh

DA11S X X X X
(DO8S,An) X X X X

(Rx,An) X X X X
(An)+ X X X X
-(An) X X X X
(An)* X X X X

4.2.2 Move
move move register to register or constant to register
mvsr move stack reference to register
mfsr move from special register (to general purpose register)
mtsr move to special register (from general purpose register)
mfdp move from debug port (to general purpose register)
mtdp move to debug port (from general purpose register)

 move mvsr mfsr mtsr mfdp mtdp

Rs,Rd X
C10S,Rd X X
SRs,Rd X
Rs,SRd X

C10,SRd X
Rd X
Rs X

4.2.3 Arithmetic, excluding multiplies
addt add register to register or constant to register
addc add with carry register to register or constant to register
adcf add carry flag to register
addh add 16-bit constant to register
subf subtract register from register or constant from register
subc subtract with carry register from register or constant from register
sbcf subtract carry flag from register
comp compare register to register or constant to register
cmpc compare with carry register to register or constant to register
cpcf compare carry flag to register
negt negate (2’s complement) from register to register
absl absolute value (2’s complement if negative, move else) from register to register
clzr count leading zeros from register to register

sf20 base (b) ISA Reference Manual 18.12.2014

14 Property of RACORS GmbH Rev. 0.9

sxbt sign extend byte
sxsh sign extend short

 addt addc adcf addh subf subc sbcf comp cmpc cpcf negt absl clzr sxbt sxsh

Rs0,Rs1,Rd X X X X
C8U,R b X X
C16,Rb X

Rs0,Rs1 X X
C10S,Rs1 X

Rs,Rd X X X X X X X
Rs X

CC update * * * * * * * * *

4.2.4 Multiplies
mlcu multiply unsigned constant * register, 8*16 -> 24-bit, stores 16-bit low word result
mult multiply registers * register, 16*16 -> 32-bit, stores 16-bit low word result
mlhu multiply high unsigned, 16*16 -> 32-bit, stores 16-bit high word result
mlhs multiply high signed, 16*16 -> 32-bit, stores 16-bit high word result

 mlcu mult mlhu mlhs

C8U,Rb X
Rs0,Rs1,Rd X X X

4.2.5 Logic
andb and bit wise of two registers or of constant and register
iorb inclusive or bit wise of two registers or of constant and register
xorb exclusive or bit wise of two registers
invt invert (1’s complement, invert) from register to register

 andb iorb xorb invt

Rs0,Rs1,Rd X X X
C8U,Rb X X X
Rs,Rd X

CC update *

4.2.6 Shift
shlz shift left with zero fill, constant or indirect shift count from 0 to 15
shlf shift left with feedback (rotate), constant or indirect shift count from 0 to 15
shru shift right unsigned, constant or indirect shift count from 0 to 15
shrs shift right signed, constant or indirect shift count from 0 to 5

 shlz shlf shru shrs

SHC4,R s,R d X X X X
Rs0,Rs1,Rd X X X X

sf20 base (b) ISA Reference Manual 18.12.2014

15 Property of RACORS GmbH Rev. 0.9

4.2.7 Bit manipulation
btst bit set, constant or indirect bit index from 0 to 15
btcl bit clear, constant or indirect bit index from 0 to 15
bttg bit toggle, constant or indirect bit index from 0 to 15
btts bit test, constant or indirect bit index from 0 to 15

 btst btcl bttg btts

BIT4,Rs1,Rd X X X
BTI 4,Rs X

Rs0,Rs1,Rd X X X
Rs0,Rs1 X

CC update *

4.2.8 Flow control
jump jump, continue program execution at specified target address
jpsr jump to subroutine
rtsr return from subroutine
rtir return from interrupt
bral branch always
brlc decrement loop counter and branch if non-zero
brxx branch conditional, 14 conditions, xx is a placeholder for the 2-character condition
stie set interrupt enable
clie clear interrupt enable
scie save and clear interrupt enable
rsie restore interrupt enable

 jump jpsr rtsr rtir bral brlc brxx stie clie scie rsie

implied X X X X X X X X
IA16 X X

IO 14S X
IO10 S X

IO 10S,S X

4.2.9 Miscellaneous
svpc save program counter to debug port
rspc restore program counter from debug port
stop stop, enter debug mode

 svpc rspc stop

implied X X X

sf20 base (b) ISA Reference Manual 18.12.2014

16 Property of RACORS GmbH Rev. 0.9

5 Reset, Interrupts & Debug-Support

5.1 Reset

5.1.1 Program start address
The processor input signal IRN[3:0] and the output signal IA[15:0] determine the program start address in
the instruction address space after a reset. The 4-bit interrupt number input signal IRN[3:0] is inserted as the
four most significant bits of the instruction address IA[15:0] of the first instruction fetch after a reset. All other
bits of IA[15:0] are zero. In summery the instruction address IA[15:0] of the first instruction fetch after a reset
is IA[15:12] = IRN[3:0], IA[11:0] = 0.
This concept enables start addresses other than zero. While the processor’s reset input is asserted external
logic drives the IRN[3:0] input to the value of the desired start address. In most systems the instruction RAM
starts at address zero. Driving IRN[3:0] to a non-zero value can be used to divert the program start after
reset e.g. to a boot ROM.

5.1.2 Processor state
After a reset the following registers and register fields of the programming model have a defined state:
CS.IR = 1, the processor starts in an interrupt routine
CS.IE = 0, interrupts are disabled
CS.IS = 0, the interrupt enable save bit is clear
CC = 0, the condition code flags are all cleared
CCS = 0, Condition Code Shadow (hidden register)
All other registers and register fields of the programming model are not defined after a reset. Their states
and content after a reset is implementation specific. Software should not rely on any specific values.

5.2 Interrupts

5.2.1 Overview
The sf20 processors have 16 interrupts named I0, I1, I2 and I15. Interrupt requests are acknowledged only if
the IE bit in register CS is set. External logic generates interrupt requests by asserting the processors
interrupt request input signal IRQ and driving the number of the requested interrupt on the processor’s 4-bit
interrupt number input IRN[3:0]. The processor acknowledges an interrupt request by asserting the IACK
output.
Each of the 16 interrupts has an associated start address in the instruction address space. These start
addresses are software programmable and are contained in the interrupt vector table which is mapped into a
32 bytes window of the processor’s data address space. The 11-bit field IVTP of special register CS defines
the start address of the table. IVTP defines the higher 11 bits of the 16-bit table address. The five least
significant bits of the table address are zero. This implies that the interrupt vector table is aligned on a 32
bytes boundary. The table contains 16 entries of 16-bit size. Each entry is a 16-bit instruction address.
When an interrupt is started the instruction address of the next instruction following the last instruction
executed before the interrupt is stored in special register IA. The state of the CC register is stored in the
hidden condition code shadow register CCS. When an rtir (return from interrupt) instruction is executed
the original values of CC is restored and program execution continues at the address in IA.
Writing to IA can be done using mtsr Rs,IA instructions. It is required at least after a processor reset to
start program execution at a defined address when leaving the interrupt state with an rtir instruction. Some
OS code may require reading and writing the register to save, redirect and restore interrupt return addresses
in cases of task switches and system calls.
Beside CC and and the instruction address the sf20 does not save any registers of the programming model
automatically. User program code must save and restore any other registers that are modified by an interrupt
service routine.

5.2.2 Interrupt Flow
An interrupt request is generated when external logic asserts the processor’s input signal IRQ. The 4-bit
interrupt number input signal IRN[3:0] determines the number of the requested interrupt from I0 – I15. The
request is acknowledged immediately if the processor is not already executing another interrupt service

sf20 base (b) ISA Reference Manual 18.12.2014

17 Property of RACORS GmbH Rev. 0.9

routine (CS.IR clear). If the processor is already executing an interrupt service routine (CS.IR set) the
request is acknowledged when the processor has returned from this routine and CS.IR has been cleared.
After the request has been acknowledged the processor reads the start address of the interrupt service
routine from the interrupt vector table in the data address space. Before executing the first instruction of the
service routine the address of the next instruction of the interrupted code sequence is saved in special
register IA, CC is saved in hidden register CCS. While executing instructions of the interrupt service routine
CS.IR is set. When an rtir (return from interrupt) instruction is executed at the end of the interrupt service
routine CC is restored from CCS and execution of the interrupted code sequence continues at the address in
IA.

5.3 Debug Support

5.3.1 Overview
The processors of the sf20 family have a scalable debug concept. To enable very low cost implementations
most of the debug resources are outside the processor core in a separate module. The functionality of this
module can be adapted to the requirements of each use case to avoid redundant resources. The processor
provides a 16-bit port to connect to the debug module.
To use any debug functions the processor has to be in the stopped state. This state is entered by either
driving the STRQ input signal to the asserted state or by executing a stop instruction. After all pending
instructions are retired the processor indicates it has reached the stopped state by asserting the STPD
output signal. While in the stopped state the debug port together with a set of dedicated instructions provide
the following low level functions:
• Transfer the content of a register Rn to the debug output port
• Transfer a 16-bit value from the debug input port to a register Rn
• Transfer the program counter value to the debug output port
• Transfer a 16-bit value from the debug input port to the program counter
• Inject individual instructions via the debug input port and execute them

The debug module must provide the following mandatory and may provide the following optional functions:
• Mandatory: communication link to the debug host (PC), e.g. JTAG, UART, USB, Ethernet
• Mandatory: state machine to handle the control signals of the debug port
• Mandatory: a mechanism to transfer 16-bit data words from the processor’s debug output port to the

debug host and from the debug host to the processor’s debug input port
• Mandatory: assert and release the processor’s reset input
• Optional: instruction breakpoint register(s)
• Optional: data breakpoint and watch point register(s)
• Optional: access to the processor’s instruction memory
• Optional: access to the processor’s data memory
• Optional: trace buffer(s)

5.3.2 Debug Port
The debug port consists of the following signals:

DBI[19:0] Debug In, 20-bit instruction/data input
DBO[15:0] Debug Out, 16-bit data output
STRQ Stop Request, 1-bit control input
INJI Inject Instruction, 1-bit control input
STPD Stopped, 1-bit control output

5.3.3 Debug Instructions
The following dedicated instructions are part of the sf20 debug concept:

mtdp move to debug port, transfers the content of a registers Rn to the debug port data
output

mfdp move from debug port, transfers the 16-bit value driven on the debug port data input
to a register Rn

svpc save program counter, transfers the instruction address of the last instruction
executed before the stopped state was entered to the debug port data output

rspc restore program counter, transfers the 16-bit value driven on the debug port data

sf20 base (b) ISA Reference Manual 18.12.2014

18 Property of RACORS GmbH Rev. 0.9

input to an internal instruction address register. When the processor leaves the
stopped state program execution continues from this address.

stop stop, the processor stops fetching new instructions and enters the stopped state
when all pending instructions are retired.

5.3.4 Debug Procedures
The following paragraphs describe how the most common debug procedures are implemented and how the
functionality is split between the debug module and the processor.

5.3.4.1 Instruction breakpoints
The instruction that should cause the break point is replaced by a stop instruction. Executing a stop
instruction causes the processor to enter the stopped mode. There are multiple options of how to replace an
instruction of a program by a stop instruction.

The simplest option requires that the processor can access the instruction memory via the data bus
(instruction memory mapped into the data address space). In this case the debug module can inject an
instruction sequence into the processor that writes a stop instruction at the desired location of the
instruction memory.
In systems where the processor cannot access the instruction memory via the data bus two options exist to
generate instruction break points. The first option requires that the debug module has direct access to the
processor’s instruction memory. In this case the debug module writes stop instructions directly into the
desired locations of the instruction memory. The second option requires one or more instruction address
registers in the debug module and the debug module must be connected to the processor’s instruction
memory controller. The debug module monitors the processor’s instruction bus and compares instruction
fetch addresses to the values in the address registers. In case of a match the instruction word read from the
instruction memory is replaced on the fly by a stop instruction opcode. This option also works for read only
instruction memories.
Once an instruction break point has been hit the debug module has to wait until the processor asserts the
STPD output signal. Then the debug host can access the processor’s registers and data memory by injecting
instruction sequences via the debug module. To continue normal processor operation the debug module has
to assert and then de-assert the STRQ signal while the STPD output is asserted.

5.3.4.2 Data breakpoints and watch points
Data break points and watch points require a set of registers in the debug module and a connection of the
debug module to the processor’s data bus. Typical entries have a least a data address register. With optional
data value and address/data mask registers a break/watch point becomes more flexible and can also trigger
on a data value or address range.
The debug module monitors the processor’s data bus and compares data address and data in/out values to
the registers of the break/watch point entries. In case of a match a watch point only signals the event to the
debug host. In case of a break point hit the debug module brings the processor in the stopped mode by
asserting the processor’s STRQ input.

5.3.4.3 Show register content
When the processor is in the stopped mode the debug module injects mtdp instructions to read the content
of general purpose registers. To read a special register first an mfsr instruction is injected to copy the
special register to a general purpose register. An mtdp instruction then transfers the general purpose
register content to the debug module.

5.3.4.4 Modify register content
When the processor is in the stopped mode the debug module injects mfdp instructions to change the
content of general purpose registers. To modify a special register the value is first written to a general
purpose register by injecting an mfdp instruction. The value is then transferred to the special register by
injecting an mtsr instruction.

5.3.4.5 Show memory content
For memories that the processor can access through the data bus the desired data word is first read into a
general purpose register by injecting a load instruction. Then the general purpose register is read by injecting
an mtdp instruction.

To read from memories that are not mapped into the processor’s data address space the debug module
requires a direct connection to these memories.

5.3.4.6 Modify memory content
For memories that the processor can access through the data bus the desired data word is first written into a
general purpose register by injecting an mfdp instruction. Then the general purpose register is written into

sf20 base (b) ISA Reference Manual 18.12.2014

19 Property of RACORS GmbH Rev. 0.9

memory by injecting a store instruction.
To write to memories that are not mapped into the processor’s data address space the debug module
requires a direct connection to these memories.

5.3.4.7 Download and start a program
Data and program code is written into the processor’s data and instruction memories using the previously
described procedures. To start a program at a certain address in the instruction address space the debug
module injects an rspc instruction and drives the desired address on the debug input port. The debug
module then de-asserts the STRQ signal. The processor leaves the stopped state and starts program
execution from the injected address.

5.3.4.8 Saving and restoring the program counter
When the processor has been brought into the stopped state to access registers and/or memories by
injecting individual instructions via the debug module it is not necessary to save and restore the program
counter. The rspc instruction is used to start programs from a defined location as described previously.

Combinations of svpc and rspc instructions are used to execute debug utility routines as part of a system’s
debug concept. Injecting longer instruction sequences while the processor is stopped, e.g. to copy memory
areas can be slow because of the instruction injection process. For each injected instruction the processor’s
pipeline is flushed and the next instruction can be injected only when the processor has reasserted the
STPD output. A more efficient method is to store some debug utility routines in a reserved area of the
processor’s instruction memory space.
To execute a debug utility routine for the debugging of an application program the processor is first brought
into the stopped state. Then the program counter is saved by injecting a svpc instruction. The value is the
address where the application program has been stopped. It is stored for later use in the debug host or in a
register of the debug module. The start address of the debug utility routine is set by injecting an rspc
instruction and driving the start address on the processor’s debug input port. The debug module then
releases the STRQ input signal the processor leaves the stopped state and executes the debug utility
routine. The last instruction of the debug utility routine is a stop instruction which brings the processor back
into the stopped state. To continue the application program at the same location it has been stopped an
rspc instruction is injected and the previously saved instruction address is driven on the processor’s debug
port input. Then the STRQ input is released and the processor continues executing the application program.

sf20 base (b) ISA Reference Manual 18.12.2014

20 Property of RACORS GmbH Rev. 0.9

6 Operand Types

6.1 Legend
This chapter defines the bit accurate generation and calculation of individual operands of instructions. For
constant and register data operands the generation of the operand value will be defined. For memory
operands and instruction words the generation or calculation of the effective memory address will be defined.
The number and types of the operands of each instruction (also called addressing modes) are not defined
here. They are defined in the addressing mode table of each instruction in the instruction details chapters.
The following paragraphs define the formats and notations used in operand type definitions and effective
address calculations.

6.1.1 Mnemonic
This is the acronym of the operand type used to specify operands in the addressing mode tables of detailed
instruction descriptions.
Mnemonics of constants with a value range have an optional suffix with the following meaning:
U (Unsigned), S (Signed)

6.1.2 Text Description
Text description of how the operand is generated or calculated. Also lists the instructions for which the
operand type is used. Text descriptions reference the variables used in the C language description

6.1.3 C language description
Pseudo C language statements are used as bit true reference of how the operand is generated or calculated.
The statements use the following data types and notations:

uint4 type: 4-bit unsigned integer
uint16 type: 16-bit unsigned integer
uint20 type: 20-bit unsigned integer
boolean type: 1-bit Boolean variable, can take the values true and false or 1 and 0.
sizeof(memory operand) , this operator yields the size of a memory operand in bytes and takes

values of 1 for byte (8-bit) operands, 2 for short (16-bit) operands and 2*n for short RGS
(register selection) operands where n is the number of registers in RGS.

6.1.4 Opcode
This table defines where the bits of the operand are located in 20-bit opcode words. For each bit that is part
of the operand the bit position within the operand type’s bit array is specified. Bits that are not part of the
operand are empty boxes in white color.
Some operand types have multiple coding options. The opcode tables have separate rows for each coding
option.

6.2 Constant operand types
Constant operands are bit fields in instruction opcodes. Constant operands are transformed into source
operands of instructions.

C8U 8-bit constant (Unsigned)

The 8-bit field C8U is extracted from the opcode word and zero-extended to the 16-bit source operand src .
The value range is [0,255].
Used with instructions: subf, addf, mlcum, andb, iorb, xorb
C language description

uint16 src;

src = C8 U;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C8U 5 4 3 2 1 0 7 6

sf20 base (b) ISA Reference Manual 18.12.2014

21 Property of RACORS GmbH Rev. 0.9

C10U 10-bit constant (Unsigned)

The 10-bit field C10U is extracted from the opcode word and zero-extended to the 16-bit source operand src .
The value range is [0,1023].
Used with instruction: mtsr
C language description

uint16 src;

src = C10 S & 0x200 ? 0xFC00 | C10 S : C10 S;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C10S 5 4 3 2 1 0 7 6 9 8

C10S 10-bit constant (Signed)

The 10-bit field C10S is extracted from the opcode word and sign-extended to the 16-bit source operand src .
The value range is [-512,511].
Used with instructions: move, mvsr, comp, mtsr
C language description

uint16 src;

src = C10 S & 0x200 ? 0xFC00 | C10 S : C10 S;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C10S 5 4 3 2 1 0 7 6 9 8

C16 16-bit constant

The 8-bit field C16 is extracted from the opcode word and becomes the 16-bit source operand src . The
value range is [0x0000,0xFF00]. Bits [7:0] of the constant are always zero and are not coded.
Used with instruction: addh
C language description

uint16 src;

src = C16;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C16U 5 4 3 2 1 0 7 6

SHC4 4-bit shift count
The 4-bit field SHC4 is extracted from the opcode word and becomes the source operand src . The value
range is [0,15].
Used with instructions: shlz, shlf, shru, shrs

C language description
uint4 src;

src = SHC4;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SHC4 3 2 1 0

BTI4 4-bit bit index
The 4-bit field BTI4 is extracted from the opcode word and becomes the source operand src . The value
range is [0,15]. The bit index is counted from the LSB (BTI4 = 0) to the MSB (BTI4 = 15). The bit index
operand is used to address individual bits of registers Rn.
Used with instructions: btst, btcl, bttg, btts

C language description
uint4 src;

src = BTI4;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BTI4 3 2 1 0

sf20 base (b) ISA Reference Manual 18.12.2014

22 Property of RACORS GmbH Rev. 0.9

6.3 Register operand types
Register operands are contained in one of the sixteen general purpose registers Rn or in one of the eight
special registers SRn. They can be either source or destination operands. Bit fields in the instruction opcode
determine which register of the Rn, SRn or An group is used. Reserved register bits and bit-fields read as
zeros.

Rs Rn register used as source

The content of register Rs is the 16-bit source operand src . Rs can be any of the 16 general purpose
registers Rn, the register number is determined by a 4-bit field in the instruction opcode. The Rs operand
type is used with instructions that have a single source operand.
C language description

uint16 src;

src = Rs;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rs 3 2 1 0
Rs 3 2 1 0

Rs0 Rn register used as source 0

The content of register Rs0 is the 16-bit source operand src0 . Rs0 can be any of the 16 general purpose
registers Rn, the register number is determined by a 4-bit field in the instruction opcode. The Rs0 operand
type is used with instructions that have two source operands. If used with non-commutative instructions like
subtract or compare Rs0 is on the right side of the operator src1 – Rs0).
C language description

uint16 src0;

src0 = Rs0;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rs0 3 2 1 0
Rs0 3 2 1 0

Rs1 Rn register used as source 1

The content of register Rs1 is the 16-bit source operand src1 . Rs1 can be any of the 16 general purpose
registers Rn, the register number is determined by a 4-bit field in the instruction opcode. The Rs1 operand
type is used with instructions that have two source operands. If used with non-commutative instructions like
subtract or compare Rs1 is on the left side of the operator (Rs1 – src0).
C language description

uint16 src1;

src1 = Rs1;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rs1 3 2 1 0
Rs1 3 2 1 0

Rd Rn register used as destination
The 16-bit destination operand dst is stored in register Rd. Rd can be any of the 16 general purpose
registers Rn, the register number is determined by a 4-bit field in the instruction opcode.
C language description

uint16 dst;

Rd = dst;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rd 3 2 1 0

sf20 base (b) ISA Reference Manual 18.12.2014

23 Property of RACORS GmbH Rev. 0.9

Rb Rn register used as both source 1 and destination
The content of register Rb is the 16-bit source operand src1 . The Rb operand type is used with instructions
that have two source operands. If used with non-commutative instructions like subtract Rb is on the left side
of the operator (Rb – src0). After the operation the 16-bit destination operand dst is stored in register Rb.
C language description

uint16 src1,dst;

src1 = Rb;

Rb = dst;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rb 3 2 1 0

SRs SRn register used as source

The content of register SRs is the 16-bit source operand src . Reserved register bits and bit fields read as
zeros. If used with register U0 the reserved bits are replaced with the sign bit (bit 7) of the U0 field. Used with
instruction: mfsr
C language description

uint16 src;

src = SRs;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SRs 3 2 1 0

SRd SRn register used as destination
The 16-bit destination operand dst is stored in register SRd. The read-only special register ID cannot be
used as destination register. Used with instruction: mtsr
C language description

uint16 dst;

SRd = dst;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SRd 3 2 1 0

sf20 base (b) ISA Reference Manual 18.12.2014

24 Property of RACORS GmbH Rev. 0.9

RGS Register Selection
RGS is a selection of registers of the Rn and SRn groups. Up to 10 registers can be selected by 10 flags in
the opcode word. Registers R0, R1, R2, R3, R4, R5, R6, R7, R9, RA, RB, RC, RD and SA can be contained
in a register selection RGS. R0, R1, RC, and RD can only be in an RGS of load/store byte instructions. R9,
RA, RB and SA can only be in an RGS of load/store short instructions. The register selection RGS is either
the source operand src[n-1:0] of a memory store instruction or the destination operand dst[n-1:0] of a
memory load instruction with addressing modes -(An) or (An)+ . The RGS source or destination operand is
an array of n 8-bit or 16-bit values where n is the number of registers selected by RGS. In memory the n
values are located at adjacent byte or 16-bit word address locations. Registers are stored to memory and
loaded from memory in a fixed order which is reversed between the -(An) and (An)+ addressing modes.
Refer to the –(An) and (An)+ memory addressing modes in the next section of this chapter for details.

Used with instructions ldbt, ldsh, stbt, stsh
C language description

uint16 src16[n], dst16[n];

uint8 src8[n], dst8[n];

if(instruction == stsh)

 src16[n-1:0] = RGS;

if(instruction == ldsh)

 RGS = dst16[n-1:0];

if(instruction == stbt)

 src8[n-1:0] = RGS;

if(instruction == ldbt)

 RGS = dst8[n-1:0];

The coding of RGS is different for the (An)+ and -(An) addressing modes. The opcode table below has
separate entries for (An)+ and -(An) . Register flags are identified by single characters with the following
notation:

• characters 0-7 and 9,A,B,C,D identify R0 - R7 and R9 - RD respectively
• character S identifies SA

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ldbt/stbt (An)+ D C 1 7 6 5 4 3 2 0
ldbt/stbt - (An) 0 2 3 4 5 6 7 1 C D
ldsh/stdh (An)+ B A 9 7 6 5 4 3 2 S
ldsh/stsh - (An) S 2 3 4 5 6 7 9 A B

sf20 base (b) ISA Reference Manual 18.12.2014

25 Property of RACORS GmbH Rev. 0.9

6.4 Data memory operand addressing
Memory operands are 8-bit, 16-bit, n*8-bit or n* 16-bit memory words used as source operand of load
instructions or as destination operand of store instructions. Addressing modes for memory operands
determine the 16-bit effective data address eda of the operand. Some of the indirect memory addressing
modes that use an address register An to calculate eda update the address register An as a side effect. For
addressing modes where the memory operand size determines the value of an address register An
increment or decrement or a scale factor the increment values or scale factors are specified in the
addressing mode table of the instruction description.
For addressing modes with an indirect address register An the opcode contains a 3-bit field that selects one
of the high-order general purpose registers R8 – RF as indirect address.

DA11S 11-bit direct, signed data address

The effective address eda is the 11-bit constant DA11S extracted from the opcode and sign-extended to 16
bits. Legal values for eda are from 0x0000 – 0x03FF and from 0xFC00 – 0xFFFF.
Used with instructions ldbt, ldsh, stbt, stsh
C language description

uint16 src,dst;

void *eda;

eda = DA11 S & 0x400 ? DA11 S | 0xF800 : DA11 S;

if(instruction == (ldbt|ldsh))

 dst = *eda;

if(instruction == (stbt|stsh))

 *eda = src;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DA11S 5 4 3 2 1 0 7 6 9 8 10

(DO8S,An) Address register indirect with 8-bit signed offset

The 8-bit constant DO8S (Signed) is extracted from the opcode and sign-extended to the 16 bit offset ofs .
The ofs value range is [-128,127]. The effective address eda is ofs added to the value of the address
register An .
Used with instructions ldbt, ldsh, stbt, stsh
C language description

uint16 src,dst,ofs;

void *eda;

ofs = DO8 S & 0x80 ? 0xFF00 | DO8 S : DO8 S;

eda = An + ofs;

if(instruction == (ldbt|ldsh))

 dst = *eda;

if(instruction == (stbt|stsh))

 *eda = src;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DO8S 5 4 3 2 1 0 7 6
An 2 1 0

sf20 base (b) ISA Reference Manual 18.12.2014

26 Property of RACORS GmbH Rev. 0.9

(Rx,An) Address register indirect with index
The effective address eda of the data memory operand is the index register Rx multiplied by the operand
size and added to the value of the address register An . Rx is one of the low-order general purpose registers
RLn .
Used with instructions ldbt, ldsh, stbt, stsh
C language description

uint16 src,dst;

void *eda;

eda = An + sizeof(memory operand) * Rx;

if(instruction == (ldbt|ldsh))

 dst = *eda;

if(instruction == (stbt|stsh))

 *eda = src;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rx 3 2 1 0
An 2 1 0

(An)+ Address register indirect with post-increment
This addressing mode is available for Rs/Rd source/destination operands and for RGS (register selection)
source/destination operands. The effective address eda of the data memory operand is the value of the
address register An . After the memory access(es) the address register An is incremented by the size (in
bytes) of the operand. Registers of RGS selections are read from / written to memory in the following fixed
order: R0/SA, R2, R3, R4, R5, R6, R7, R1/R9, RC/RA, RD/RB. Where 2 registers, separated by a ‘/’
character are specified the first is for ldbt/stbt and the second for ldsh/stsh instructions.

Used with instructions ldbt, stbt, stsh, ldsh
C language description

uint16 src,dst,rgs[n]; // n = number of regis ters in RGS

void *eda;

int i;

eda = An;

if(instruction == (ldbt|ldsh))

 if(dst == rgs)

 for(i=0;i < n;i++){

 rgs[i] = *eda;

 eda += sizeof(rgs[i]);

 }

 else{

 dst = *eda;

 eda += sizeof(dst);

 }

if(instruction == (stbt|stsh))

 if(src == rgs)

 for(i=0;i < n;i++){

 *eda = rgs[i];

 eda += sizeof(rgs[i]);

 }

 else{

 *eda = src;

 eda += sizeof(dst);

 }

An = eda;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
An 2 1 0

sf20 base (b) ISA Reference Manual 18.12.2014

27 Property of RACORS GmbH Rev. 0.9

-(An) Address register indirect with pre-decrement

This addressing mode is available for Rs/Rd source/destination operands and for RGS (register selection)
source/destination operands. Before each memory access the address register An is decremented by the
size (in bytes) of the individual operand. The effective address eda of the data memory operand is the
value of the address register An after the decrement. Registers of the RGS selection are read from / written
to memory in the following fixed order: RD/RB, RC/RA, R1/R9, R7, R6, R5, R4, R3, R2, R0/SA. Where 2
registers, separated by a ‘/’ character are specified the first is for ldbt/stbt and the second for
ldsh/stsh instructions.

Used with instructions ldbt, ldsh, stbt, stsh
C language description

uint16 src, dst, rgs[n]; // n = number of registe rs in RGS

void *eda;

int i;

eda = An;

if(instruction == (ldbt,ldsh))

 if(dst == rgs)

 for(i=0;i < n;i++){

 eda -= sizeof(rgs[i]);

 rgs[i] = *eda;

 }

 else{

 eda -= sizeof(dst);

 src = *eda;

 }

if(instruction == (stbt,stsh))

 if(src == rgs)

 for(i=0;i < n;i++){

 eda -= sizeof(rgs[i]);

 *eda = rgs[i];

 }

 else{

 eda -= sizeof(dst);

 *eda = src;

 }

An = eda;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
An 2 1 0

(An)* Address register indirect with post-update
The effective address eda of the data memory operand is the value of the address register An . After the
memory access 10-bit special register U0 is sign-extended to 16 bits and added to the address register An .
Used with instructions ldbt, ldsh, stbt, stsh
C language description

uint16 src, dst;

void *eda;

eda = An;

if(instruction == (ldbt|ldsh))

 dst = *eda;

if(instruction == (stbt|stsh))

 *eda = src;

An += U0 & 0x200 ? 0xFC00 | U0 : U0;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
An 2 1 0

sf20 base (b) ISA Reference Manual 18.12.2014

28 Property of RACORS GmbH Rev. 0.9

6.5 Instruction addressing
Instruction addresses point to 20-bit opcode words in the instruction memory. With the exception of some
flow instructions the effective instruction address eia of the next instruction is the address of the current
instruction plus one.
C language description

uint20 *eia;

eia[next instruction] = eia[current instruction] + 1;

Some of the flow instructions calculate a new effective instruction address eia and instruction execution
continues non-sequentially at the new location in the instruction memory. The following paragraphs define
how these flow instructions generate the new effective instruction address eia.

IA16 16-bit absolute instruction address
The 16-bit field IA16 is extracted from the opcode word and becomes the 16-bit effective instruction address
eia. The IA16 value range is [0,0xFFFF] and covers the entire instruction address space.
Used with instruction jpsr
C language description

uint20 *eia;

eia = IA16;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IA 16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IO14 S 10-bit instruction offset (Signed)
The 14-bit field IO14S is extracted from the opcode word. The new effective instruction address eia is the
sign extended constant added to the address of the current instruction cia .

Used with instruction bral
C language description

uint20 *eia,*cia;

eia = cia + (IO10 S & 0x200 ? 0xFC00 | IO10 S : IO10 S);

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IO 10S 9 8 7 6 5 4 3 2 1 0 13 12 11 10

IO10 S 10-bit instruction offset (Signed)
The 10-bit field IO10S is extracted from the opcode word. The new effective instruction address eia is the
sign extended constant added to the address of the current instruction cia .

Used with instructions brlc, brxx
C language description

uint20 *eia,*cia;

eia = cia + (IO10 S & 0x200 ? 0xFC00 | IO10 S : IO10 S);

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IO 10S 9 8 7 6 5 4 3 2 1 0

S Speculation
The 1-bit flag S is extracted from the opcodes word. Processor implementations may use the S flag to
determine the speculation type (branch taken of branch not taken) of conditional branches in situations
where a branch condition is not evaluated yet by the time a branch instruction is decoded. Using the flag can
improve the performance (#of effective execution cycles) of conditional branches with a preferred condition
evaluation result that is known at compile time. The setting of the S flag has no impact on any destination
operands. It provides an optional tool for performance improvement of processor implementations.
Used with instructions brxx
C language description

boolean s;

s = S;

opcode bits 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S S

sf20 base (b) ISA Reference Manual 18.12.2014

29 Property of RACORS GmbH Rev. 0.9

7 Load, store and move instructions

7.1 Common properties
The load, store and move instructions transfer the source operand to the destination operand without
modifying the value of the operand. Except the load/store instructions with RGS source or destination
operands all load, store and move instructions have a single source operand and a single destination
operand. Move instructions have a constant or register source and a register destination. Load instructions
have a memory source and a register destination. Store instructions have a register source and a memory
destination. None of the load, store and move instructions update the condition code flags in register CC.

7.2 Legend
The next section lists the load, store and move instructions in alphabetical order and defines the bit accurate
operations they perform. The following paragraphs define the formats and notations used in individual
instruction definitions.

7.2.1 Mnemonic
A four-character acronym of the instruction used to specify instructions in assembly language.

7.2.2 Text Description
Text description of the operations performed. Text descriptions reference the operand variables that are
defined and used in the C language description

7.2.3 C language description
These C language statements are the bit true reference of the operations performed by an instruction. The
following types and variables are used in the statements:

uint20 type: 20-bit unsigned integer
uint16 type: 16-bit unsigned integer
uint8 type: 8-bit unsigned integer
boolean type: 1-bit Boolean variable, can take the values true and false or 1 and 0.

The use of unsigned integers does not necessarily mean that the underlying operands are unsigned. It
means that the computations defined by the C statements are done assuming unsigned operands.

7.2.4 Addressing modes table
These tables list all addressing modes of an instruction. For each addressing mode the assembly language
format is specified and the assignment of operands used in the C statements to operand specifiers in the
assembly format is given.
For the (An)+ and –(An) addressing modes with RGS source or destination operand the eda (effective
data address) column uses variable i to reference the i th element of the RGS register selection. Variable i
is running from 0 to n-1 where n is the number of registers contained in RGS.

7.2.5 Notes
Notes are optional and provide hints of how the instruction is used or if other instructions can do similar
operations more efficiently.

sf20 base (b) ISA Reference Manual 18.12.2014

30 Property of RACORS GmbH Rev. 0.9

7.3 Instruction details

ldbt load byte
Loads the byte (8-bit word) from the effective data address eda in the data memory, zero-extends the value
to 16 bits and stores it in the 16-bit destination dst . Some addressing modes update the indirect address
register An as indicated in the addressing modes table. With the (An)+,RGS and -(An),RGS addressing
mode the update parameter n is the number of registers contained in RGS and can take values from 1 to 10.
C language description

uint16 dst;

uint8 *eda;

dst = *eda;

The C language statements for the calculation of the effective data address eda and for the An update
operations are specified in the addressing modes table for each addressing mode.

Addressing Modes assembly format eda An update dst

direct 11-bit data address ldbt DA11S,Rd DA11S not appl. Rd

indirect data address with 8-bit offset ldbt (DO8S,An),Rd An+DO8S no update Rd

indirect data address with index ld bt (R x,An),Rd An+Rx no update Rd

indirect data address with post-increment ldbt (An) +,Rd An += 1 Rd

indirect data address with pre-decrement ldbt - (An) ,Rd An- 1 - = 1 Rd

indirect data address with post-update ldbt (An) *,Rd An += U0 Rd

indirect data address with post-increment ldbt (An) +,RGS An+i += n RGS

indirect data address with pre-decrement ldbt - (An) ,RGS An- i - 1 - = n RGS

ldsh load short
Loads the short operand (16-bit word) from the effective data address eda in the data memory and stores it
in the 16-bit destination dst . Some addressing modes update the indirect address register An as indicated
in the addressing modes table. With the (An)+,RGS and -(An),RGS addressing modes the update
parameter n is the number of registers contained in RGS and can take values from 1 to 10.
C language description

uint16 dst,*eda;

dst = *eda;

The C language statements for the calculation of the effective data address eda and for the An update
operations are specified in the addressing modes table for each addressing mode.

Addressing Modes assembly format eda An update dst

direct 11-bit data address ldsh DA11S,Rd DA11S not appl. Rd

indirect data address with 8-bit offset ldsh (DO8S,An),Rd An+DO8S no update Rd

indirect data address with index ld sh (R x,An), Rd An+2* Rx no update Rd

indirect data address with post-increment ldsh (An) +,Rd An += 2 Rd

indirect data address with pre-decrement ldsh - (An) ,Rd An- 2 - = 2 Rd

indirect data address with post-update ldsh (An) *,Rd An += U0 Rd

indirect data address with post-increment ldsh (An) +,RGS An+2*i += 2*n RGS

indirect data address with pre-decrement ldsh - (An) ,RGS An- 2*i - 2 - = 2*n RGS

mfdp move from debug port

The lower 16 bits of the 20-bit word driven on the debug input port dbgi of the processor are stored in the
16-bit destination dst .
C language description

uint16 dst;

uint20 dbgi;

dst = dbgi & 0xFFFF;

Addressing Modes assembly format src dst

single register mfdp Rd dbgi Rd

sf20 base (b) ISA Reference Manual 18.12.2014

31 Property of RACORS GmbH Rev. 0.9

mfsr move from special register

The 16-bit source src is stored in the 16-bit destination dst . Reserved bits of special register sources read
as zeros.
C language description

uint16 src,dst;

dst = src;

Addressing Modes assembly format src dst

dual registers mfsr SRs, Rd SRs Rd

move move
The source operand src is stored in the 16-bit destination operand dst .
C language description

uint16 src,dst;

dst = src;

Addressing Modes assembly format src dst

dual registers move Rs,Rd Rs Rd

constant and single register move C 10S,Rd C10S Rd

mtdp move to debug port

The 16-bit source operand src is transferred to the debug output port dbgo .
C language description

uint16 dbgo,src;

dbgo = src;

Addressing Modes assembly format src dst

single register mtdp R s Rs dbgo

mtsr move to special register

The 16-bit source src is stored in the 16-bit destination dst . Reserved bits are not modified. With special
register CS as destination the flag bits IR, IE and IS are not modified. With special register U0 as destination
and the C10,U0 addressing mode C10 is a signed constant and can take values from -512 to 511.

C language description

uint16 src,dst;

dst = src;

Addressing Modes assembly format src dst

dual registers mtsr Rs,SRd Rs SRd

constant and single register mtsr C 10S,SRd C10S SRd

mvsr move stack reference

The 10-bit constant C10S is sign-extended to 16-bit and added to general purpose register R8. The result is
the 16-bit destination operand dst . Reserved bits are not modified.

C language description

uint16 src,dst;

dst = src;

Addressing Modes assembly format src dst

constant and single register mvsr C10 S,Rd C10S Rd

Notes
Although not mandatory by convention general purpose register R8 is used as stack pointer in systems with
a stack pointer. The mvsr instruction generates an address relative to the current stack pointer and stores it
in a general purpose register. Typically the destination is an address register An .

sf20 base (b) ISA Reference Manual 18.12.2014

32 Property of RACORS GmbH Rev. 0.9

stbt store byte

Extracts the least significant byte (8-bit word) from the 16-bit source operand src and stores it at the
effective data address eda in data memory. Some addressing modes update the indirect address register An
as indicated in the addressing modes table. With the RGS,(An)+ and RGS,-(An) addressing modes the
update parameter n is the number of registers contained in RGS and can take values from 1 to 10.
C language description

uint16 src;

uint8 *eda;

*eda = src;

The C language statements for the calculation of the effective data address eda and the An update
operations are specified in the addressing modes table for each addressing mode.

Addressing Modes assembly format eda An update src

direct 11-bit data address stbt Rs, DA11S DA11S not appl. Rs

indirect data address with 8-bit offset stbt Rs, (DO8S,An) An+DO8S no update Rs

indirect data address with index stbt Rs,(Rx,An) An+Rx no update Rs

indirect data address with post-increment stbt Rs, (An) + An += 1 Rs

indirect data address with pre-decrement stbt Rs, - (An) An- 1 - = 1 Rs

indirect data address with post-update stbt Rs, (An) * An += U0 Rs

indirect data address with post-increment stbt RGS,(An) + An+i += n RGS

indirect data address with pre-decrement stbt RGS,- (An) An- i - 1 - = n RGS

stsh store short
Stores the 16-bit source operand(s) src at the effective data address eda in the data memory. Some
addressing modes update the indirect address register An as indicated in the addressing modes table. With
the RGS,(An)+ and RGS,-(An) addressing modes the update parameter n is the number of registers
contained in RGS and can take values from 1 to 10.
C language description

uint16 src,*eda;

*eda = src;

The C language statements for the calculation of the effective data address eda and the An update
operations are specified in the addressing modes table for each addressing mode.

Addressing Modes assembly format eda An update src

direct 11-bit data address stsh Rs, DA11S DA11S not appl. Rs

indirect data address with 8-bit offset stsh Rs, (DO8S,An) An+DO8S no update Rs

indirect data address with index stsh Rs,(Rx,An) An+2* Rx no update Rs

indirect data address with post-increment stsh Rs, (An) + An += 2 Rs

indirect data address with pre-decrement stsh Rs, - (An) An- 2 - = 2 Rs

indirect data address with post-update stsh Rs, (An) * An += U0 Rs

indirect data address with post-increment stsh RGS,(An) + An+2*i += 2*n Rs

indirect data address with pre-decrement stsh RGS,- (An) An- 2*i - 2 - = 2*n RGS

sf20 base (b) ISA Reference Manual 18.12.2014

33 Property of RACORS GmbH Rev. 0.9

8 Computation instructions

8.1 Common properties
Computation instructions perform mathematical operations on the data values of software programs. One or
more source operands are transformed to a destination operand by an arithmetic, logic, shift, bit
manipulation, or multiply operation.

8.2 Legend
The next sections define the bit accurate operations of the sf20 computation instructions grouped into
categories and in alphabetical order for each category. The following paragraphs define the formats and
notations used in individual instruction definitions.

8.2.1 Mnemonic
A four-character acronym of the instruction used to specify instructions in assembly language.

8.2.2 Text Description
Text description of the operations performed. Text descriptions reference the operand variables that are
defined and used in the C language description

8.2.3 C language description
These C language statements are the bit true reference of the operations performed by an instruction. The
following types and variables are used in the statements:

uint16 type: 16-bit unsigned integer
sint16 type: 16-bit signed integer
uint4 type: 4-bit unsigned integer
boolean type: 1-bit Boolean variable, can take the values true and false or 1 and 0.

In addition to these variables the condition code flags in special register CC are used directly as destination
operands. If the C language description of an instruction contains no statements that assign new values to
the condition code flags then the instruction does not update the CC register.
Individual bits of non-array variables are referenced by the variable name followed by the bit number in
square brackets. E.g. bit 3 of source operand 0 is referenced by src0[3] .
The use of unsigned integers does not necessary mean that the underlying operands are unsigned. It means
that the computations defined by the C statements are done assuming unsigned operands.

8.2.4 Addressing modes table
These tables list all addressing modes of the instruction. For each addressing mode the assembly language
format is specified and the assignment of operands used in the C statements to operand specifiers in the
assembly format is given.

8.2.5 Notes
Notes are optional and provide hints of how the instruction is used or if other instructions can do similar
operations more efficiently.

sf20 base (b) ISA Reference Manual 18.12.2014

34 Property of RACORS GmbH Rev. 0.9

8.3 Arithmetic Instructions

absl absolute value
The absolute value of the 16-bit source operand src is stored in the 16-bit destination operand dst .
C language description

uint16 src,dst;

dst = src & 0x8000 ? –src : src;

Addressing Modes assembly format src dst

dual registers absl Rs,Rd Rs Rd

adcf add carry flag
Adds the carry flag CC.C to the 16-bit source operand src and stores the result in the 16-bit destination
operand dst . The flags in CC are updated. The zero flag CC.Z is set only if dst is zero and if CC.Z was set
before the operation. If one of these two conditions is not met CC.Z is cleared.
C language description

uint16 src,dst;

dst = src + CC.C;

CC.C = (src1[15]&src0[15]) | (src1[15]&~dst[15]) | (src0[15]&~dst[15]);

CC.O = (src1[15]&src0[15]&~dst[15]) | (~src1[15]&~s rc0[15]&dst[15]);

CC.Z = CC.Z & (dst == 0) ? 1 : 0;

CC.N = dst[15];

Addressing Modes assembly format src dst

dual registers adcf Rs,Rd Rs Rd

addc add with carry
Adds the 16-bit source operands src0 , src1 and the carry flag CC.C. The result is stored in the 16-bit
destination operand dst and the flags in CC are updated. The zero flag CC.Z is set only if dst is zero and if
CC.Z was set before the operation. If one of these two conditions is not met CC.Z is cleared.
C language description

uint16 src0,src1,dst;

dst = src1 + src0 + CC.C;

CC.C = (src1[15]&src0[15]) | (src1[15]&~dst[15]) | (src0[15]&~dst[15]);

CC.O = (src1[15]&src0[15]&~dst[15]) | (~src1[15]&~s rc0[15]&dst[15]);

CC.Z = CC.Z & (dst == 0) ? 1 : 0;

CC.N = dst[15];

Addressing Modes assembly f ormat src0 src1 dst

triadic registers addc Rs0,Rs1,Rd Rs0 Rs1 Rd

sf20 base (b) ISA Reference Manual 18.12.2014

35 Property of RACORS GmbH Rev. 0.9

addt add to
Adds the two 16-bit source operands src0 and src1 , stores the result in the 16-bit destination operand dst
and updates the flags in CC.
C language description

uint16 src0,src1,dst;

dst = src1 + src0;

CC.C = (src1[15]&src0[15]) | (src1[15]&~dst[15]) | (src0[15]&~dst[15]);

CC.O = (src1[15]&src0[15]&~dst[15]) | (~src1[15]&~s rc0[15]&dst[15]);

CC.Z = dst == 0 ? 1 : 0;

CC.N = dst[15];

Addressing Modes assembly format src0 src1 dst

triadic registers addt Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and single register addt C 8U,Rb C8U Rb Rb

addh add high
The 16-bit constant C16 is added to the 16-bit source operand src1 . The result is stored in the 16-bit
destination operand dst . Bits [7:0] of constant C16 are always zero.
C language description

uint16 src1,dst;

dst = C16 + src1;

Addressing Mode assembly format src0 src1 dst

constant and single register addh C 16, Rb C16 Rb Rb

Notes
Main purpose of the addh instruction is the generation of 16-bit constants in general purpose registers Rn.
This is done by a move C10S,Rd instruction followed by a addh instruction with the dst of the move used
as both src1 and dst operands. Bits[7:0] of the C10S of the move instruction are the lower 8 bits and the
C16 of the addh instruction are the higher 8 bits of the 16-bit constant.

clzr count leading zeros
Counts the number of zero bits in the 16-bit source operand src starting with the MSB until the first ‘1’ bit is
found. The count is stored in the 16-bit destination operand dst . If no ‘1’ bit is found (src == 0) the count
stored in the destination operand dst is 16.
C language description

uint16 src,dst;

uint4 bti;

dst = 16;

for(bti=15;bti >= 0;bti--)

 if(src[bti] == 1){

 dst = 15 – bti;

 break;

 }

Addressing Modes assembly format src dst

dual registers clzr Rs,Rd Rs Rd

sf20 base (b) ISA Reference Manual 18.12.2014

36 Property of RACORS GmbH Rev. 0.9

cmpc compare with carry
Subtracts the 16-bit source operand src0 and the carry flag CC.C from the 16-bit source operand src1 and
updates the flags in CC according to the result. The zero flag CC.Z is set only if dst is zero and if CC.Z was
set before the operation. If one of these two conditions is not met CC.Z is cleared.
C language description

uint16 src0,src1,tmp;

tmp = src1 - src0 – CC.C;

CC.C = (~src1[15]&src0[15]) | (~src1[15]&tmp[15]) | (src0[15]&tmp[15]);

CC.O = (src1[15]&~src0[15]&~tmp[15]) | (~src1[15]&s rc0[15]&tmp[15]);

CC.Z = CC.Z & (tmp == 0) ? 1 : 0;

CC.N = tmp[15];

Addressing Modes assembly format src0 src1

dual registers cmpc Rs0,Rs1 Rs0 Rs1

comp compare
Subtracts the 16-bit source operand src0 from the 16-bit source operand src1 and updates the flags in CC
according to the result.
C language description

uint16 src0,src1,tmp;

tmp = src1 - src0;

CC.C = (~src1[15]&src0[15]) | (~src1[15]&tmp[15]) | (src0[15]&tmp[15]);

CC.O = (src1[15]&~src0[15]&~tmp[15]) | (~src1[15]&s rc0[15]&tmp[15]);

CC.Z = tmp == 0 ? 1 : 0;

CC.N = tmp[15];

Addressing Modes assembly format src0 src1

dual registers comp Rs0,Rs1 Rs0 Rs1

constant and single register comp C 10S,Rs1 C10S Rs1

cpcf compare carry flag
Subtracts the carry flag CC.C from the 16-bit source operand src and updates the flags in CC according to
the result. The zero flag CC.Z is set only if dst is zero and if CC.Z was set before the operation. If one of
these two conditions is not met CC.Z is cleared.
C language description

uint16 src,tmp;

tmp = src – CC.C;

CC.C = ~src[15] & tmp[15];

CC.O = src1[15] & ~tmp[15];

CC.Z = CC.Z & (tmp == 0) ? 1 : 0;

CC.N = tmp[15];

Addressing Modes assembly format src

dual registers cpcf Rs Rs

negt negate
The 2’s complement of the 16-bit source operand src is stored in the 16-bit destination operand dst .
C language description

uint16 src,dst;

dst = –src;

Addressing Modes assembly format src dst

dual registers negt Rs,Rd Rs Rd

sf20 base (b) ISA Reference Manual 18.12.2014

37 Property of RACORS GmbH Rev. 0.9

sbcf subtract carry flag
Subtracts the carry flag CC.C from the 16-bit source operand src stores the result in the 16-bit destination
operand dst and updates the flags in CC. The zero flag CC.Z is set only if dst is zero and if CC.Z was set
before the operation. If one of these two conditions is not met CC.Z is cleared.
C language description

uint16 src,dst;

dst = src - CC.C;

CC.C = ~src[15] & dst[15];

CC.O = src[15] & ~dst[15];

CC.Z = CC.Z & (dst == 0) ? 1 : 0;

CC.N = dst[15];

Addressing Modes assembly format src dst

dual registers sbc f Rs Rs Rd

subc subtract with carry
Subtracts the 16-bit source operand src0 and the carry flag CC.C from the 16-bit source operand src1 .
The result is stored in the 16-bit destination operand dst and the flags in CC are updated. The zero flag
CC.Z is set only if dst is zero and if CC.Z was set before the operation. If one of these two conditions is not
met CC.Z is cleared.
C language description

uint16 src0,src1,dst;

dst = src1 - src0 - CC.C;

CC.C = (~src1[15]&src0[15]) | (~src1[15]&dst[15]) | (src0[15]&dst[15]);

CC.O = (src1[15]&~src0[15]&~dst[15]) | (~src1[15]&s rc0[15]&dst[15]);

CC.Z = CC.Z & (dst == 0) ? 1 : 0;

CC.N = dst[15];

Addressing Modes assembly format src0 src1 dst

triadic registers subc Rs0,Rs1,Rd Rs0 Rs1 Rd

subf subtract from

Subtracts the 16-bit source operand src0 from the 16-bit source operand src1 , stores the result in the 16-
bit destination operand dst and updates the flags in CC.
C language description

uint32 src0,src1,dst;

dst = src1 - src0;

CC.C = (~src1[31]&src0[31]) | (~src1[31]&dst[31]) | (src0[31]&dst[31]);

CC.O = (src1[31]&~src0[31]&~dst[31]) | (~src1[31]&s rc0[31]&dst[31]);

CC.Z = dst == 0 ? 1 : 0;

CC.N = dst[31];

Addressing Modes assembly format src0 src1 dst

triadic registers subf Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and single register subf C 8U,R b C8U Rb Rb

sxbt sign extend byte
Extends the sign of the low-byte of the 16-bit source operand src to the high byte and store the result in the
16-bit destination operand dst .
C language description

uint16 src,dst;

dst = src & 0x80 ? 0xFF00 | src : src & 0xFF;

Addressing Modes assembly format src dst

dual registers sxbt Rs,Rd Rs Rd

sf20 base (b) ISA Reference Manual 18.12.2014

38 Property of RACORS GmbH Rev. 0.9

Notes
Main purpose of the sxbt instruction is to convert signed byte operands loaded from memory into a general
purpose register Rn to a 16-bit 2’s complement format for subsequent computations.

sxsh sign extend short
Extends the sign of the 16-bit source operand src to the 16-bit destination operand dst .
C language description

uint16 src,dst;

dst = src & 0x8000 ? 0xFFFF : 0;

Addressing Modes assembly format src dst

dual registers sx sh Rs,Rd Rs Rd

Notes
Main purpose of the sxsh instruction is to convert signed short operands loaded from memory into a general
purpose register Rn to a multi-precision (> 16-bits, e.g. 32-bit) 2’s complement format stored in multiple
general purpose registers for subsequent multi-precision computations.

8.4 Logic Instructions

andb logic AND bit wise
Performs a bit wise logic AND operation between the two 16-bit source operands src0 and src1 , stores the
result in the 16-bit destination operand dst and updates the flags in CC. The order of C statements is
important regarding the update of CC.O. CC.O uses the old value of CC.C as source operand before CC.C
is updated by the andb instruction.
C language description

uint16 src0,src1,dst;

boolean par;

uint4 bti;

dst = src1 & src0;

par = 0;

for(bti=0;bti < 16;bti++)

 par ^= dst[bti];

CC.O = par ^ CC.C;

CC.C = par;

CC.Z = dst == 0 ? 1 : 0;

CC.N = dst[15];

Addressing Modes assembly format src0 src1 dst

triadic registers andb Rs0, Rs1,Rd Rs0 Rs1 Rd

constant and single register andb C 8U,R b C8U Rb Rb

Notes
The andb instruction is the only logic instruction that updates CC. This is because ‘and’ operations are
frequently used to test bits or bit fields against zero.
A special feature of the sf20 andb instruction is the parity generation in CC.C and CC.O. It is useful for CRC
calculations and other security and data integrity related algorithms. CC.C contains the parity of the
destination operand of the current andb instruction. CC.O is used for the parity of longer bit strings > 16 bits.
For the parity of long bit strings first CC.C and CC.O are cleared by e.g. a mtsr 0,CC instruction. Then a
sequence of andb instructions is executed, as many as are necessary to cover the entire long string. After
the last andb instruction CC.O is the parity of the entire long string.

sf20 base (b) ISA Reference Manual 18.12.2014

39 Property of RACORS GmbH Rev. 0.9

invt invert
Inverts the 16-bit source operand src and stores the result in the 16-bit destination operand dst.
C language description

uint16 src,dst;

dst = ~src;

Addressing Modes assembly format src dst

dual registers invt Rs,Rd Rs Rd

iorb inclusive OR bit wise

Performs a bit wise inclusive or between the two 16-bit source operands src0 and src1 and stores the
result in the 16-bit destination operand dst .
C language description

uint16 src0,src1,dst;

dst = src1 | src0;

Addressing Modes assembly format src0 src1 dst

triadic registers iorb Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and single register iorb C 8U,R b C8U Rb Rb

xorb exclusive OR
Performs a bit wise exclusive or between the two 16-bit source operands src0 and src1 and stores the
result in the 16-bit destination operand dst .
C language description

uint16 src0,src1,dst;

dst = src1 ^ src0;

Addressing Modes assembly format src0 src1 dst

triadic registers xorb Rs0,Rs1,R Ld Rs0 Rs1 Rd

constant and single register xorb C 8U,R b C8U Rb Rb

8.5 Shift Instructions

shlf shift left with feedback
Performs a left shift with feedback (rotate) operation of the 16-bit source operand src and stores the result
in the 16-bit destination dst . The shift count shc4 can take values from 0 to 15. The shift with feedback
operation is a left shift that shifts in the bits shifted out at the MSB of the operand back in at the LSB of the
operand. In addressing modes with indirect shift count shc4 is equal to bits [3:0] of source register Rs0. Bits
[15:4] of Rs0 are ignored.
C language description

uint16 src,dst;

uint4 shc4;

dst = (src << shc4) | (src >> (16 – shc4));

Addressing Modes assembly format shc4 src dst

triadic registers shlf Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and dual registers shlf SHC 4,R s1,R d SHC4 Rs1 Rd

sf20 base (b) ISA Reference Manual 18.12.2014

40 Property of RACORS GmbH Rev. 0.9

shlz shift left with zero fill
Performs a left shift with zero fill of the 16-bit source operand src and stores the result in the 16-bit
destination dst . The shift count shc4 can take values from 0 to 15. In addressing modes with indirect shift
count shc4 is equal to bits [3:0] of source register Rs0. Bits [15:4] of Rs0 are ignored.
C language description

uint16 src,dst;

uint4 shc4;

dst = src << shc4;

Addressing Modes assembly format shc4 src dst

triadic registers shlz Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and single register shlz SHC 4,R s1,R d SHC4 Rs1 Rd

shrs shift right signed
Performs a signed right shift of the 16-bit source operand src and stores the result in the 16-bit destination
dst . The shift count shc4 can take values from 0 to 15. Signed shift means that the sign of the source
operand src[15] is preserved and the destination operand dst has the same sign as the source operand
src . In addressing modes with indirect shift count shc4 is equal to bits [3:0] of source register Rs0. Bits
[15:4] of Rs0 are ignored.
C language description

uint16 src,dst;

uint4 shc4;

dst = src >> shc4;

if(src[15])

 dst |= 0xFFFF << (16 – shc4);

Addressing Modes assembly format shc4 src dst

triadic registers shrs Rs0, Rs1,Rd Rs0 Rs1 Rd

constant and single register shrs SHC4,R s1,R d SHC4 Rs1 Rd

shru shift right unsigned
Performs a right shift of the 16-bit source operand src and stores the result in the 16-bit destination dst .
The shift count shc4 can take values from 0 to 15. In addressing modes with indirect shift count shc4 is
equal to bits [3:0] of source register Rs0. Bits [15:4] of Rs0 are ignored.
C language description

uint16 src,dst;

uint4 shc4;

 dst = src >> shc4;

Addressing Modes assembly format shc4 src dst

triadic registers shru Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and single register shru SHC4,R s1,R d SHC4 Rs1 Rd

sf20 base (b) ISA Reference Manual 18.12.2014

41 Property of RACORS GmbH Rev. 0.9

8.6 Bit manipulation instructions

btcl bit clear
Clears the bit of the 16-bit source operand src indexed by bti4 and stores the result in the 16-bit
destination dst . The bit index bti4 can take values from 0 to 15. In addressing modes with indirect bit index
bti4 is equal to bits [3:0] of the source register Rs0. Bits [15:4] of Rs0 are ignored.
C language description

uint16 src,dst;

uint4 bti4;

dst = src & ~(1 << bti4);

Addressing Modes assembly format bti4 src dst

triadic registers btcl Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and single register btcl BTI 4,R s1,R d BTI 4 Rs1 Rd

btst bit set
Sets the bit of the 16-bit source operand src indexed by bti4 and stores the result in the 16-bit destination
dst . The bit index bti4 can take values from 0 to 15. In addressing modes with indirect bit index bti4 is
equal to bits [3:0] of the source register Rs0. Bits [15:4] of Rs0 are ignored.
C language description

uint16 src,dst;

uint4 bti4;

dst = src | (1 << bti4);

Addressing Modes assembly format bti4 src dst

triadic registers btst Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and single register btst BTI 4,R s1,R d BTI 4 Rs1 Rd

bttg bit toggle
Toggles the bit of the 16-bit source operand src indexed by bti4 and stores the result in the 16-bit
destination dst . The bit index bti4 can take values from 0 to 15. In addressing modes with indirect bit index
bti4 is equal to bits [3:0] of the source register Rs0. Bits [15:4] of Rs0 are ignored.
C language description

uint16 src,dst;

uint4 bti4;

dst = src ^ (1 << bti4);

Addressing Modes assembly format bti4 src dst

triadic registers bttg Rs0,Rs1,Rd Rs0 Rs1 Rd

constant and single register bttg BTI 4,R s1,R d BTI 4 Rs1 Rd

btts bit test
Tests the bit of the 16-bit source operand src indexed by bti4 and updates the condition codes in CC
according to the result. The bit index bti4 can take values from 0 to 15. In addressing modes with indirect
bit index bti4 is equal to bits [3:0] of source register Rs0. Bits [15:4] of Rs0 are ignored.
C language description

uint16 src,tmp;

uint4 bti4;

tmp = src & (1 << bti4);

CC.C = 0;

CC.O = 0;

CC.Z = tmp == 0 ? 1 : 0;

CC.N = tmp[15];

Addressing Modes assembly format bti4 src

triadic registers btts Rs0,Rs1 Rs0 Rs1

constant and single register btts BTI 4,R s1 BTI 4 Rs1

sf20 base (b) ISA Reference Manual 18.12.2014

42 Property of RACORS GmbH Rev. 0.9

8.7 Multiply Instructions

mlcu multiply constant unsigned
Performs a multiply of the 8-bit constant source operand C8U and the 16-bit source operand src1 . Stores the
lower 16 bits of the 24-bit product in the 16-bit destination operand dst .
C language description

uint8 src0;

uint16 src1,dst;

dst = src1 * src0;

Addressing Modes assembly format src0 src1 dst

constant and single register mlcu C8 U,Rb C8U Rb Rb

mlhs multiply high signed
Performs a signed multiply of the two 16-bit source operands src0 and src1 . The 31-bit product is right
shifted (sign preserved) by 16 bits, sign-extended to 16 bits and stored in the 16-bit destination dst .
C language description

uint16 dst;

sint16 scr0,scr1;

dst = (src1 * src0) >> 16;

Addressing Modes assembly format src0 src1 dst

triadic registers mlhs Rs0,Rs1,Rd Rs0 Rs1 Rd

mlhu multiply high unsigned
Performs an unsigned multiply of the two 16-bit source operands src0 and src1 . The 32-bit product is right
shifted by 16 bits and stored in the 16-bit destination dst .
C language description

uint16 src0,src1,dst;

dst = (src1 * src0) >> 16;

Addressing Modes assembly format src0 src1 dst

triadic registers mlhu Rs0,Rs1,Rd Rs0 Rs1 Rd

mult multiply

Performs a multiply of the two 16-bit source operands src0 and src1 and stores the lower 16 bits of the 32-
bit product in the 16-bit destination operand dst .
C language description

uint16 src0,src1,dst;

dst = src1 * src0;

Addressing Modes assembly format src0 src1 dst

triadic registers mult Rs0,Rs1,Rd Rs0 Rs1 Rd

sf20 base (b) ISA Reference Manual 18.12.2014

43 Property of RACORS GmbH Rev. 0.9

9 Flow control instructions

9.1 Common properties
The instructions of this category control the program flow. They don’t perform data operations and do not
update general purpose registers.

9.2 Legend
The next section lists the flow control instructions in alphabetical order and defines the bit accurate
operations they perform. The following paragraphs define the formats and notations used in individual
instruction definitions.

9.2.1 Mnemonic
A four-character acronym of the instruction used to specify instructions in assembly language.

9.2.2 Text Description
Text description of the operations performed. Text descriptions reference the operand variables that are
defined and used in the C language description

9.2.3 C language description
These C language statements are the bit true reference of the operations performed by an instruction. The
following types and variables are used in the statements:

Uint20 type: 20-bit unsigned integer
uint16 type: 16-bit unsigned integer
Boolean type: 1-bit Boolean variable, can take the values true and false or 1 and 0.

Individual bits of variables are referenced by the variable name followed by the bit number in square
brackets. E.g. bit 11 of source operand 0 is referenced by src0[11] .
The use of unsigned integers does not necessary mean that the underlying operands are unsigned. It means
that the computations defined by the C statements are done assuming unsigned operands.

9.2.4 Addressing modes table
This table lists all addressing modes of the instruction. For each addressing mode the assembly language
format is specified.

9.2.5 Notes
Notes are optional and provide hints of how the instruction is used or if other instructions can do similar
operations more efficiently.

sf20 base (b) ISA Reference Manual 18.12.2014

44 Property of RACORS GmbH Rev. 0.9

9.3 Instruction details

brlc decrement loop counter and branch if non zero
Decrements special register LC (loop counter). If LC is unequal zero after the decrement program execution
continues at the effective instruction address eia calculated from the current instruction address cia and
constant IO10S. The 10-bit instruction address offset IO10S is sign-extended to 16 bits and added to cia . If
LC is zero after the decrement program execution continues with the next instruction in sequence.
C language description

uint16 tmp,cia,eia;

LC -= 1;

if(LC != 0){

 tmp = IO10 S & 0x200 ? 0xFC00 | IO10 S : IO10 S;

 eia = cia + tmp;

}

else

 eia = cia + 1;

Addressing Modes assembly format

10-bit instruction address offset brlc IO 10S

brxx branch if condition ‘xx’ is true

This is a group of 14 conditional branch instructions. Individual instructions have different mnemonics (see
addressing modes table), xx is a placeholder for the two characters that express the condition.
If the condition cnd is true program execution continues at the effective instruction address eia calculated
from the current instruction address cia and constant IO10S. The 10-bit instruction address offset IO10S is
sign-extended to 16 bits and added to cia . If the condition cnd is false instruction execution continues with
the next instruction in sequence.
The brxx addressing mode includes the speculation flag S. Processor implementations with branch
speculation functionality can use this flag to decide whether to speculatively take a branch or not in cases
where the condition cnd is not evaluated yet by the time the conditional branch instruction is decoded. In
case of wrong speculation these implementations must revert back to the correct branch option. The S flag is
a feature to improve the performance of conditional branch instruction execution. Processor implementations
may or may not use the flag. The setting of the S flag has no impact on any operand results.
C language description

uint16 tmp,cia,eia;

boolean cnd;

if(cnd == true){

 tmp = IO10 S & 0x200 ? 0xFC00 | IO10 S : IO10 S;

 eia = cia + tmp;

}

else

 eia = cia + 1;

Addressing modes
All of the 14 conditional branch instructions have the same addressing mode: “ 10-bit instruction address
offset with speculation flag”. In the table below the addressing mode column is omitted. Instead the table
includes a column that specifies the conditions cnd as C language statements. The following variables are
used in the statements:

boolean C,O,Z,N;

C = CC.C;

O = CC.O;

Z = CC.Z;

N = CC.N;

sf20 base (b) ISA Reference Manual 18.12.2014

45 Property of RACORS GmbH Rev. 0.9

Instruction Condition assembly format

branch if no carry CND = ~C; br nc IO 10S,S

branch if carry CND = C; br cr IO 10S,S

branch if no overflow CND = ~O; br no IO 10S,S

branch if overflow CND = O; br of IO 10S,S

branch if non zero CND = ~Z; br nz IO 10S,S

branch if zero CND = Z; br zr IO 10S,S

branch if positive CND = ~N; br ps IO 10S,S

branch if negative CND = N; br ng IO 10S,S

Branch if lower or same CND = C | Z; br ls IO 10S,S

branch if higher CND = ~C & ~Z; br hi IO 10S,S

branch if lower CND = (N & ~O) | (~N & O); br lo IO 10S,S

branch if greater of equal CND = (N & O) | (~N & ~O); br ge IO 10S,S

branch if lower or equal CND = Z | (N & ~O) | (~N & O); br le IO 10S,S

branch if greater CND = ~Z & ((N & O) | (~N & ~O)); br gt IO 10S,S

clie clear interrupt enable
Disables interrupts by clearing the interrupt enable bit IE in register CS.
C language description

CS.IE = 0;

Addressing Modes assembly format

implied clie

jump jump
Program execution continues at the effective instruction address eia generated from a constant in the
opcode or from special register TA.
C language description

uint16 eia;

The C language statements for the calculation of eia are specified in the addressing modes table for each
addressing mode.

Addressing Modes assembly format eia

implied jump eia = TA;

jpsr jump to subroutine
The address of the next instruction in sequence following the jpsr instruction is saved in special register
SA. This is the current instruction address cia plus 1. Program execution continues at the effective
instruction address eia generated from a constant in the opcode or from special register TA.
C language description

uint16 cia,eia;

SA = cia + 1;

The C language statements for the calculation of eia are specified in the addressing modes table for each
addressing mode.

Addressing Modes assembly format eia

implied jpsr eia = TA;

16-bit absolute instruction address jpsr IA 16 eia = IA 16;

Notes
sf20 processors do not automatically save and restore the return addresses of sub-routines on a stack. For
nested sub-routines software must save and restore special register SA using store and load instructions. In
the lowest nesting level where no further sub-routines are called saving and restoring of SA is not necessary.

sf20 base (b) ISA Reference Manual 18.12.2014

46 Property of RACORS GmbH Rev. 0.9

rsie restore interrupt enable

Copies the interrupt enable save bit IS in CS to the IE bit in CS.
C language description

CS.IE = CS.IS;

Addressing Modes assembly format

implied rsie

Notes
The rsie instruction is used to restore the original interrupt enable state after it has been saved with a scie
instruction.

rspc restore program counter
The current instruction address cia is set to the lower 16 bits of the value driven on the 20-bit debug input
port dbgi .
C language description

uint16 cia;

uint20 dbgi;

cia = dbgi & 0xFFFF;

Addressing Modes assembly format

implied rspc

Notes
The svpc instruction is used by software debugging systems to save the current instruction address when
the processor is in the stopped state. The debugger can then execute debugger utility routines in normal
operation mode. To continue execution of the program under debug an rspc instruction is injected while the
processor is in the stopped state to restore the original instruction address.

rtir return from interrupt
The condition codes CC are restored from hidden registers CCS where they had been saved when the
interrupt was started. The interrupt flag in CS.IR is cleared. Program execution continues at the address in
special register IA as effective instruction address eia . If the processor is currently not executing an
interrupt the behavior of an rtir instruction is not defined.
C language description

uint16 cia,eia;

if(CS.IR){

 eia = IA;

 CC = CCS;

 CS.IR = 0;

}

Addressing Modes assembly format

implied rtir

rtsr return from subroutine
Program execution continues at the address in special register SA as effective instruction address eia .
C language description

uint16 eia;

eia = SA;

Addressing Modes assembly format

implied rtsr

Notes
sf20 processors do not automatically save and restore the return addresses of sub-routines on a stack. For
nested sub-routines software must save and restore register SA using store and load instructions. In the
lowest nesting level where no further sub-routines are called saving and restoring of SA is not necessary.

sf20 base (b) ISA Reference Manual 18.12.2014

47 Property of RACORS GmbH Rev. 0.9

scie save and clear interrupt enable
Copies the interrupt enable bit IE in CS to the IS bit in CS and then clears IE. Disables interrupts.
C language description

CS.IS = CS.IE;

CS.IE = 0;

Addressing Modes assembly format

implied scie

Notes
The scie instruction is used to temporarily disable interrupts and then restore the original interrupt enable
state with an rsie instruction. This is required e.g. for atomic read/modify/write operations on semaphore
variables.

stie set interrupt enable
Enables interrupts by setting the interrupt enable bit IE in register CS.
C language description

CS.IE = 1;

Addressing Modes assembly format

implied stie

stop stop
Instruction fetching stops and the processor waits until execution of previously fetched instructions is
finished. Then the debug state is entered. To resume program execution external debug hardware must
signal the end of the debug state.
C language description

Not applicable

Addressing Modes assembly format

implied stop

Notes
The stop instruction is used by software debugging systems to set instruction break points. Debugger
software replaces instructions at desired break point positions with stop instructions. Debugger controlled
single stepping through programs is also done using stop instructions.

svpc save program counter
The current instruction address cia is zero-extended to 16 bits and transferred to the debug output port
dbgo .
C language description

uint16 cia,dbgo;

dbgo = cia;

Addressing Modes assembly format

implied svpc

Notes
The svpc instruction is used by software debugging systems to save the current instruction address when
the processor is in the stopped state. The debugger can then execute debugger utility routines in normal
operation mode. To continue execution of the program under debug an rspc instruction is injected while the
processor is in the stopped state to restore the original instruction address.

sf20 base (b) ISA Reference Manual 18.12.2014

48 Property of RACORS GmbH Rev. 0.9

Instruction Coding
The following table contains the opcodes of all sf20 base ISA instructions. The instructions are listed in
alphabetical order. For instructions with multiple addressing modes all addressing modes are listed
sequentially in the table. Following the opcode table are two more tables. The first table explains the color
coding of the opcode table. The second table defines the bit assignments of bit fields in the opcode table.

Addressing

Modes
opcode bits

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
absl Rs,Rd 0 1 0 0 0 0 1 1 Rs Rd 1 1 1 0
adcf Rs,Rd 0 1 0 0 1 0 0 1 Rs Rd 1 1 1 0
addc Rs0,Rs1,Rd 0 0 1 1 Rs0 Rs1 Rd 1 0 1 0
addh C16,Rb 1 C16 0 1 1 Rb 0 0 1 0

addt
Rs0,Rs1,Rd 0 0 0 1 Rs0 Rs1 Rd 1 0 1 0
C8U,Rb 1 C8U 0 0 1 Rb 0 0 1 0

andb
Rs0,Rs1,R d 0 1 0 1 Rs0 Rs1 Rd 1 0 1 0
C8U,Rb 1 C8U 1 0 1 Rb 0 0 1 0

bral IO14 S 1 1 IO14 S 0 0 0 1
brcr IO10 S,S 1 1 IO10 S S 0 0 1 1 0 0 1
brge IO10 S,S 1 1 IO10 S S 0 1 1 1 1 0 1
brgt IO10 S,S 1 1 IO10 S S 1 0 1 1 1 0 1
brhi IO10 S,S 1 1 IO10 S S 0 0 1 1 1 0 1
brlc IO10 S 1 1 IO10 S 0 1 1 1 1 1 0 1
brle IO10 S,S 1 1 IO10 S S 0 0 0 1 1 0 1
brlo IO10 S,S 1 1 IO10 S S 1 1 0 1 1 0 1
brls IO10 S,S 1 1 IO10 S S 0 0 0 1 1 0 1
brnc IO10 S,S 1 1 IO10 S S 0 0 0 1 0 0 1
brng IO10 S,S 1 1 IO10 S S 1 1 1 1 0 0 1
brno IO10 S,S 1 1 IO10 S S 0 1 0 1 0 0 1
brnz IO10 S,S 1 1 IO10 S S 1 0 0 1 0 0 1
brof IO10 S,S 1 1 IO10 S S 0 1 1 1 0 0 1
brps IO10 S,S 1 1 IO10 S S 1 1 0 1 0 0 1
brzr IO10 S,S 1 1 IO10 S S 1 0 1 1 0 0 1

btcl
Rs0,Rs1,Rd 0 1 0 0 Rs0 Rs1 Rd 0 0 1 0
BTI4 ,Rs1,Rd 0 1 0 0 BTI4 Rs1 Rd 0 1 1 0

btst
Rs0,Rs1,Rd 0 1 1 0 Rs0 Rs1 Rd 0 0 1 0
BTI4,Rs1,Rd 0 1 1 0 BTI4 Rs1 Rd 0 1 1 0

bttg
Rs0,Rs1,Rd 0 1 1 1 Rs0 Rs1 Rd 0 0 1 0
BTI4,Rs1,Rd 0 1 1 1 BTI4 Rs1 Rd 0 1 1 0

btts
Rs0,Rs1 0 1 0 1 Rs0 Rs1 0 0 0 0 0 0 1 0
BTI4,Rs1 0 1 0 1 BTI4 Rs1 0 0 0 0 0 1 1 0

clie implied 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1
clzr Rs,Rd 0 1 0 0 0 1 0 1 Rs Rd 1 1 1 0
cmpc Rs0,Rs1 0 1 0 1 1 0 0 1 Rs0 Rs1 1 1 1 0

comp
Rs0,Rs1 0 1 0 1 1 0 0 0 Rs0 Rs1 1 1 1 0
C10S,Rs1 1 C10S 0 Rs1 1 0 1 0

cpcf Rs 0 1 0 0 1 0 1 0 Rs 0 0 0 0 1 1 1 0
invt Rs,Rd 0 1 0 0 0 1 0 0 Rs Rd 1 1 1 0

iorb
Rs0,Rs1,Rd 0 1 1 0 Rs0 Rs1 Rd 1 0 1 0
C8U,Rb 1 C8U 1 1 0 Rb 0 0 1 0

jump implied 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

jpsr
IA16 1 0 IA16 0 1
implied 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

ldbt

DA11S,Rd 0 DA11S Rd 0 0 0 0
(DO8S,An),Rd 0 DO8S An Rd 0 0 0 1
(Rx,An),Rd 1 0 0 0 Rx 0 An Rd 0 0 0 0
(An)+,Rd 1 0 1 0 0 0 0 0 0 An Rd 0 0 0 0
- (An),Rd 1 0 1 0 0 0 0 0 1 An Rd 0 0 0 0
(An)*,Rd 1 0 1 1 0 0 0 0 0 An Rd 0 0 0 0
(An)+,RGS 1 1 D C 1 7 6 5 0 An 4 3 2 0 0 0 0 0
- (An),RGS 1 1 0 2 3 4 5 6 1 An 7 1 C D 0 0 0 0

ldsh

DA11S,Rd 0 DA11S Rd 0 1 0 0
(DO8S,An),Rd 0 DO8S An Rd 0 1 0 1
(Rx,An),Rd 1 0 0 0 Rx 0 An Rd 0 1 0 0
(An)+,Rd 1 0 1 0 0 0 0 0 0 An Rd 0 1 0 0
- (An),Rd 1 0 1 0 0 0 0 0 1 An Rd 0 1 0 0
(An)*,Rd 1 0 1 1 0 0 0 0 0 An Rd 0 1 0 0
(An)+,RGS 1 1 B A 9 7 6 5 0 An 4 3 2 S 0 1 0 0
- (An),RGS 1 1 S 2 3 4 5 6 1 An 7 9 A B 0 1 0 0

sf20 base (b) ISA Reference Manual 18.12.2014

49 Property of RACORS GmbH Rev. 0.9

mfdp Rd 0 1 0 1 0 0 0 0 0 0 0 0 Rd 1 1 1 0
mfsr SRs, Rd 0 1 0 1 0 0 1 0 SRs Rd 1 1 1 0
mlhs Rs0,Rs1,Rd 0 0 1 1 Rs0 Rs1 Rd 1 1 1 0
mlhu Rs0,Rs1,Rd 0 0 1 0 Rs0 Rs1 Rd 1 1 1 0

move
Rs,Rd 0 1 0 0 0 0 0 0 Rs Rd 1 1 1 0
C10S,Rd 1 C10S 0 Rd 0 1 1 0

mtdp Rs 0 1 0 1 0 0 0 1 Rs 0 0 0 0 1 1 1 0

mtsr
Rs,SRd 0 1 0 1 0 0 1 1 Rs SRd 1 1 1 0
C10,SRd 1 C10 0 SRd 1 1 1 0

mult Rs0,Rs1,Rd 0 0 0 0 Rs0 Rs1 Rd 1 1 1 0
mvsr C10S,Rd 1 C10S 1 Rd 0 1 1 0
negt Rs,Rd 0 1 0 0 0 0 1 0 Rs Rd 1 1 1 0
rsie implied 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1
rspc implied 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1
rtir implied 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1
rtsr implied 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
sbcf Rs,Rd 0 1 0 0 1 0 0 0 Rs Rd 1 1 1 0

shlf
Rs0,Rs1,Rd 0 0 1 0 Rs0 Rs1 Rd 0 0 1 0
SHC4,Rs1,Rd 0 0 1 0 SHC4 Rs1 Rd 0 1 1 0

shlz
Rs0,Rs1,Rd 0 0 0 0 Rs0 Rs1 Rd 0 0 1 0
SHC4,Rs1,Rd 0 0 0 0 SHC4 Rs1 Rd 0 1 1 0

shrs
Rs0,Rs1,Rd 0 0 1 1 Rs0 Rs1 Rd 0 0 1 0
SHC4,Rs1,Rd 0 0 1 1 SHC4 Rs1 Rd 0 1 1 0

shru
Rs0,Rs1,Rd 0 0 0 1 Rs0 Rs1 Rd 0 0 1 0
SHC4,Rs1,Rd 0 0 0 1 SHC4 Rs1 Rd 0 1 1 0

scie implied 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1

stbt

Rs,DA11 S 0 DA11S Rd 1 0 0 0
Rs,(DO8 S,An) 0 DO8S An Rd 1 0 0 1
Rs,(Rx,An) 1 0 0 0 Rx 0 An Rd 1 0 0 0
Rs,(An)+ 1 0 1 0 0 0 0 0 0 An Rd 1 0 0 0
Rs, - (An) 1 0 1 0 0 0 0 0 1 An Rd 1 0 0 0
Rs,(An)* 1 0 1 1 0 0 0 0 0 An Rd 1 0 0 0
RGS,(An)+ 1 1 D C 1 7 6 5 0 An 4 3 2 0 1 0 0 0
RGS,- (An) 1 1 0 2 3 4 5 6 1 An 7 1 C D 1 0 0 0

stie implied 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
stop implied 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

stsh

Rs,DA11 S 0 DA11S Rd 1 1 0 0
Rs,(DO8 S,An) 0 DO8S An Rd 1 1 0 1
Rs,(Rx,An) 1 0 0 0 Rx 0 An Rd 1 1 0 0
Rs,(An)+ 1 0 1 0 0 0 0 0 0 An Rd 1 1 0 0
Rs, - (An) 1 0 1 0 0 0 0 0 1 An Rd 1 1 0 0
Rs,(An)* 1 0 1 1 0 0 0 0 0 An Rd 1 1 0 0
RGS,(An)+ 1 1 B A 9 7 6 5 0 An 4 3 2 S 1 1 0 0
RGS,- (An) 1 1 S 2 3 4 5 6 1 An 7 9 A B 1 1 0 0

subc Rs0,Rs1,Rd 0 0 1 0 Rs0 Rs1 Rd 1 0 1 0

subf
Rs0,Rs1,Rd 0 0 0 0 Rs0 Rs1 Rd 1 0 1 0
C8U,Rb 1 C8U 0 0 0 Rb 0 0 1 0

svpc implied 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
sxb t Rs,Rd 0 1 0 0 0 1 1 0 Rs Rd 1 1 1 0
sxsh Rs,Rd 0 1 0 0 0 1 1 1 Rs Rd 1 1 1 0

xorb
Rs0,Rs1,Rd 0 1 1 1 Rs0 Rs1 Rd 1 0 1 0
C8U,Rb 1 C8U 1 1 1 Rb 0 0 1 0

The next table explains the color coding used in the opcode table above.

Color Description of table entries
 Register select field, selects a register of the programming model
 Constant field
 Fixed coded bits used to distinguish between instruction groups and individual instructions within groups

The next table defines the bit assignments of register select and constant fields in the opcode table. The left
column contains the names of one or more register select or constant fields. If there are more fields
separated by semicolons then all of these fields have the same format. The right 20 columns define how the
multi-bit fields from the left column are mapped into 20-bit opcodes. For all left column fields except RGS the
numbers given in the opcode columns define the bit positions and bit ordering of the multi-bit field(s)
specified in the left column.
Among the register specifications RGS is a special case. 10 bits of the opcode marked with single-characters
represent the 10 possible registers of a register selection. Bits that are set are part of the register selection

sf20 base (b) ISA Reference Manual 18.12.2014

50 Property of RACORS GmbH Rev. 0.9

bits that are cleared are not part of the register selection. The single character markings relate to registers in
the following way:

• Bits marked 0 to 7 and 9-D represent registers R0 – R7 and R9 – RD respectively

• The bit marked S represents register SA

Note that the RGS coding is different (reversed) for the (An)+ and –(An) addressing modes and the group
of registers that can be part of an RGS is different for byte load/store instructions and for short load/store
instructions.

Opcode field
opcode bits

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rs0,Rx 3 2 1 0

An 2 1 0
Rs,Rs0,Rs1,SRs 3 2 1 0

Rs,Rs1,Rd,Rb,SRd 3 2 1 0
RGS for ldbt/stbt with (An)+ D C 1 7 6 5 4 3 2 0
RGS for ldsh/stsh with (An)+ B A 9 7 6 5 4 3 2 S
RGS for ldbt/stbt with –(An) 0 2 3 4 5 6 7 1 C D
RGS for ldsh/stsh with –(An) S 2 3 4 5 6 7 9 A B

C8U,DO8S 5 4 3 2 1 0 7 6
C10S,C10 U 5 4 3 2 1 0 7 6 9 8

DA11S 5 4 3 2 1 0 7 6 9 8 10
SHC4,BTI 4 3 2 1 0

I O10S 9 8 7 6 5 4 3 2 1 0
I O14S 9 8 7 6 5 4 3 2 1 0 13 12 11 10
IA 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

