

Revision 1.0
19. January 2014

Author: Martin Raubuch

‘readme’ notes

sf32
evaluation package

Property of RACORS GmbH
info@racors.com

 sf32 eval1 readme 19.01.2014

2 Property of RACORS GmbH Rev. 1.0

Revision History
Revision Date

1.0 19Jan2014 Initial Revision

Table of contents
1 Introduction .. 3

1.1 Purpose .. 3

1.2 License ... 3

1.3 Installation .. 3

1.4 Content ... 3

2 Tutorial .. 4

2.1 Overview ... 4

2.2 The dcs simulator ... 4

2.3 Processor models ... 4

2.4 The example project ... 5

2.5 Running simulations ... 5

2.6 Creating new software projects... 6

 sf32 eval1 readme 19.01.2014

3 Property of RACORS GmbH Rev. 1.0

1 Introduction

1.1 Purpose
This evaluation package is intendet for development engineers that want to take a look at the RACORS sf32
family of 32-bit microprocessors. It contains tools to build and test small software projects for the sf32b
(base) ISA (Instruction Set Architecture).
The package also contains synthesizable RTL code of the sf32bu core, the ultra-light implementation of the
sf32b ISA which may be used free of charge in commercial and non-commercial applications.
The second chapter is a tutorial that shows how to use the tools to create and test software projects.

1.2 License
This free of charge package is provided as is with no warranty or support. Licensing details are described in
the license.txt file which is part of the package. The file is located in the same directory as this readme file.

1.3 Installation
The package is available for two platforms:

1. cygwin, a Linux environment for PCs with Windows OS
2. Linux, for PCs with native Linux OS

Only differences are the executables in the eval1/bin directory, all other files are identical. After unpacking
the tar ball copy the executables from the eval1/bin directory to your usr/bin directory for convenient
use from any shell window. Of course it’s also possible to run the executables by specifying their file paths
directly. In this case copying to usr/bin is not required.

1.4 Content
The following table lists all files of the package with their location and a short description.

File location description
readme.pdf

eval1
this readme file

license.txt licensing terms

sf32_qrg_revxx.pdf

eval1/docs

sf32 quick reference guide, xx = revision

sf32bISA_Revxx.pdf sf32b ISA reference manual, xx = revision

sf32buIMA_Revxx.pdf sf32bu IMA (Implementation) reference manual

sf32asmRevxx.pdf sf32 assembler user manual, xx = revision

dcsliteRevxx.pdf dcslite simulator user manual, xx = revision

sf32asm

eval1/bin

sf32 assembler, executable

eval1b sf32b ISS (Instruction Set Simulator), executable

eval1bu sf32bu cycle accurate simulator, executable

eval1bl sf32bl cycle accurate simulator, executable

eval1.asm

eval1/projects/eval1/sf32b

example project top-level assembly, appl. mode

system.asm example project top-level assembly, system mode

eval1.h example project header, definitions

main.asm

example project assembly sources, appl. mode intdiv.asm

stdout.asm

start.asm example project assembly sources, system mode

dcscontrol simulator control file

dcscontrol eval1/projects/eval1/sf32bu simulator control file

dcscontrol eval1/projects/eval1/sf32bl simulator control file

sf32bu.v eval1/rtl synthesizable Verilog of the sf32bu

 sf32 eval1 readme 19.01.2014

4 Property of RACORS GmbH Rev. 1.0

2 Tutorial

2.1 Overview
This chapter shows how to create software projects for the sf32b architecture using the sf32asm standalone
assembler and how to test/verify the software using the dcs simulator. The package contains a small
example software project called eval1.

2.2 The dcs simulator
All RACORS processors and hardware IPs have been developed with the dcs modeling and simulation tool,
a RACORS proprietary tool. The tool has been developed specifically for processor development and for
hardware/software co-design. Dis-assembled instructions can be included in simulation listings which makes
it also very useful for software development and verification.
This package contains a stripped down version of dcs called dcs-lite. It includes all features to simulate
existing circuits and is primarily intended for software development and verification. The features for
hardware development have been removed. A dcs-lite user manual can be found in the eval1/docs
folder.
Hardware models for dcs are written in C language and linked with the simulation engine to generate
simulator executables. Each unique circuit requires a separate simulator executable which contains the
circuit model.

2.3 Processor models
The package contains three simulator executables in eval1/bin , one for ISS simulations of the sf32b ISA
and one for each of the sf32bu and sf32bl processor implementations. The contained circuit models have the
following common features:

• 4MBytes system instruction memory mapped to 0x00000000-0x003FFFFF of the system mode
instruction address space

• 4MBytes application instruction memory mapped to 0x00000000-0x003FFFFF of the application
mode instruction address space

• 4MBytes system data memory mapped to 0x00000000-0x003FFFFF of the system mode data
address space

• 4MBytes application data memory mapped to 0x00000000-0x003FFFFF of the application mode
data address space

• A stdout test bench peripheral to print text strings to the simulation shell window

• A test bench peripheral to print the current simulation cycle to the simulation shell window

The processor models are different between the executables but are fully software compatible because all
three support the sf32b ISA.

sf32b ISS (Instruction Set Simulation) model
This ISS model implements the sf32b ISA but no features of a hardware implementation. It is the functional
and performance reference for implementations.
Functional reference means that program code that is executed on a hardware implementation (CSA model)
of the sf32b ISA must generate the same results as the ISS model running this program code.
To be suitable as performance reference the ISS model’s IPC (Instructions Per Cycle) is 1. All instructions
are executed in one cycle except load/store instructions with multiple source/destination registers which take
one cycle per register to be close to implementation realism.
ISS simulations are very fast (in the order of 10M cycles/s) and generate bit true results. They are well suited
for software development and functional verification. Performance (cycle counts) reflects the IPC of 1 and
cannot be used directly as performance indicator of a hardware implementation. However correlating with
the average IPC of the target implementation provides a good estimate of the expected real life performance.

sf32bu and sf32bl CSA (Cycle & Structure Accurate) models
These models reflect the actual hardware architecture and implementation of the respective processor.
Synthesizable Verilog code of an implementation is derived from its corresponding CSA model and is verified
against this model by co-simulation and cycle-by-cycle matching of all IOs, internal signals and registers.

 sf32 eval1 readme 19.01.2014

5 Property of RACORS GmbH Rev. 1.0

In software development CSA simulations can be used to measure and optimize performance. Measurement
is 100% accurate because the CSA models are cycle accurate. Simulation results of critical code sequences
can be used to analyze if cycles are lost e.g. due to data dependencies and if performance can be improved
by instruction re-ordering or replacement.

2.4 The example project
The project is located at eval1/projects/eval1 . This directory contains three sub-directories one for
each of the sf32b, sf32bu and sf32bl based models and associated simulator executables in eval1/bin .
The three sub-directories have different simulator control files to reference processor registers for list-vector
generation and memories.
The assembly sources of the example project are located in the sf32b subdirectory. eval1.asm is the
application mode top-level and system.asm is the system mode top-level. Separate code for the system
operation mode is required because all three models of the example have separate application mode and
system mode memories.
The system mode code in start.asm is only a few lines. It initializes the interrupt vector table address (not
used in the example project) and the stack pointer then sets up the application mode program start address
and finally switches to the application mode.
Most of the example source code is in main.asm . The program calls routines in stdout.asm to print
messages to the screen. Header file eval1.h defines addresses of data objects and the program start
address. File intdiv.asm contains an integer divide routine which is used by the number-to-text conversion
routine in main.asm . The example program performs the following actions:

• Prints “Hello World” to the screen (simulation shell window)
• Calculates the prime numbers from 1 to 1000 using the “Sieve of Eratosthenes” algorithm
• Prints the prime numbers found
• Prints “Program End”

2.5 Running simulations

Generating executable code from the assembly sources
This is done by running the assembler (executable in eval1/bin) in directory
eval1/projects/eval1/sf32b with eval1.asm as argument and then with system.asm as argument.
You may want to have a look at the generated list files eval1.log and system.log . The generated code
is in eval1.cod and system.cod which are text readable files as well. When dcs-lite is started it loads
the instruction and data memories of the simulation model with the code from eval1.cod and
system.cod . The dcs-lite control file dcscontrol contains memory load commands that reference the
.cod files.

ISS simulation of the example program
In directory eval1/projects/eval1/sf32b run the simulator eval1b (executable in eval1/bin) with
arguments 50000 a. This runs the simulator for 50000 cycles and generates format a list vectors. The
example program should print messages on the screen as described earlier. The “Program End” message is
printed in cycle 48399.
List vectors are written into file listfile with two lines per vector plus a blank line as separator for each
cycle. The format is defined in file dcscontrol and has the following elements from left to right:

line element

1

Cycle number

Disassembled instruction (hex)

Instruction Address (hex)

Registers R0, R1, … R7, separator then registers R8, R9, … RF (hex)

2

Instruction word (hex)

Registers RP, RQ, RU, RV, RW, RX, RY, RZ (hex)

Special register LC (hex)

Special register CC (binary)

 sf32 eval1 readme 19.01.2014

6 Property of RACORS GmbH Rev. 1.0

Special register CS (hex)

Special registers TA, SA, IA (hex)

In ISS simulations the effect of each instruction (updating of destination operands) happens in the cycle
where the instruction is listed. Generated file memdump shows memory contents at the end of the simulation
as defined in dcscontrol .

sf32bu CSA simulation of the example program
In directory eval1/projects/eval1/sf32bu run the simulator eval1bu (executable in eval1/bin)
with arguments 100000 a. This runs the simulator for 100000 cycles and generates format a list vectors.
The instruction code is loaded from the .cod files in the neighboring sf32b directory to make sure that
exactly the same code is executed as with the ISS simulation.
The same messages are printed as with the ISS simulation. The “Program End” message is printed in cycle
97933 which shows that the sf32bu implementation takes about twice the cycles as the theoretical ISS model
to execute the same program.
The list vectors in listfile have almost the same format as the ISS list vectors. A minor difference is the
printing of the flags of special register CS as a separate field of the second line. Otherwise the main
difference is the extra marker character in front of each disassembled instruction. It indicates the execution
status of the attached instruction, e.g. ‘*’ means final execution cycle, ‘-‘ means stalled and ‘0’,’1’,’2’, ….
indicate intermediate cycles of multi-cycle instructions.
In the memory listing file memdump a major difference to the ISS simulation is that undefined memory
locations are printed as XX characters. Memory locations are defined only if they are loaded from a .cod file
when the simulator is started or if the processor writes a defined value to them.

sf32bl CSA simulation of the example program
In directory eval1/projects/eval1/sf32bl run the simulator eval1bl (executable in eval1/bin)
with arguments 70000 a. This runs the simulator for 70000 cycles and generates format a list vectors. As
with the sf32bu simulation the instruction code is loaded from the .cod files in the neighboring sf32b
directory.
The same messages are printed as with the ISS simulation. The “Program End” message is printed in cycle
63783 which shows that the sf32bl implementation is somewhat slower than the theoretical ISS model but
faster than the sf32bu.
The register elements of the list vectors in listfile have the same format as the ISS list vectors. Main
difference compared to the ISS and sf32bu simulations is the printing of two disassembled instructions, one
in each line. This is because the sf32bl has decoupled flow-control and computation/load/store execution
units and it is possible that two instructions (one flow + one non-flow) are executed in the same cycle.
The marker characters in front of disassembled instructions indicate the execution status but have somewhat
different meaning compared to the sf32bu simulation except for the ‘*’ and ‘-‘ markers which indicate
executed and stalled instructions respectively. Some extra markers are used in conjunction with branch
speculation. Ignored ‘i’ is used as marker for conditional branch instructions that are speculatively not
executed. Instructions that are stalled in their final execution stage because they have been fetched
speculatively and the associated branch condition is not resolved yet have a (?) marker. When a branch
condition is resolved showing that the speculation was wrong a ‘*’ marker followed by “resume” is printed to
indicate that instruction fetching and execution continues with the correct branch alternative. The execution
pipeline is flushed and speculatively fetched instructions in the final execution stage are aborted which is
indicated by a ‘!’ marker.

2.6 Creating new software projects
Copy the example project directory eval1/projects/eval1 and rename it to the desired project name.
You may also want to rename the assembly source files. Two top-level files are required, one for the
application mode and one for the system mode. The assembler generated .cod files have the same names
as the top-level files, but with a .cod extension. They are referenced in the dcscontrol simulator control
files (MEMLD commands), the file names there must be changed to the new top-level file names.
Since the models of this package have no hardware that generates interrupts the start code in
eval1/projects/…/sf32b/start.asm can be kept. Once in application mode the only way to re-enter
the system mode without interrupts are security exceptions caused by instructions that are illegal in the
application mode.

