

User Manual

Revision 1.0
28. December 2013

Author: Martin Raubuch

Standalone assembler
for the sf32 family of

32-bit microprocessors

sf32asm

Property of RACORS GmbH
info@racors.com

 sf32asm User Manual 28.12.2013

2 Property of RACORS GmbH Rev. 1.0

Revision History
Revision Date

0.9 06Sep2012 • user manual for Rev. 0.9 of the sf32asm assembler
• supports the sf32b and sfr32b ISAs

1.0 28Dec2013 • support for sfr32b ISA removed
• property note changed to RACORS GmbH

Table of contents
1 Overview ... 3

1.1 Introduction ... 3

1.2 OS support ... 3

1.3 Installation .. 3

1.4 Feature summery .. 3

1.5 Invocation ... 3

1.6 Structure of this manual .. 3

2 Source file format .. 4

2.1 Overview ... 4

2.2 Operand field syntax ... 4

2.3 Labels ... 5

2.4 Directives .. 5

2.5 Instructions ... 7

3 Output file formats ... 9

3.1 Code file ... 9

3.2 Log file .. 9

4 Notes ... 10

4.1 Text and data section addresses .. 10

4.2 Known Problems ... 10

 sf32asm User Manual 28.12.2013

3 Property of RACORS GmbH Rev. 1.0

1 Overview

1.1 Introduction
The sf32asm is a standalone assembler for the sf32 family of microprocessors. Standalone means that the
tool directly generates a code file with absolute instruction and data addresses. An extra linking step is not
required. The sources can be contained in multiple files. The assembler has an include directive to handle
multiple source files.
Syntax of instructions and directives is compatible with the GNU assembler. Translation of sources for use
with the GNU assembler is an easy step. Only the scope of symbols (labels, variable names) has to be
adapted (local versus external) to enable the linking of the GNU assembler object code output from multiple
source files.

1.2 OS support
The sf32asm is a shell tool. Binaries are available for Linux and for Windows with Cygwin software installed.

1.3 Installation
On Linux machines copy the binary sf32asm into the /bin directory. On Windows machines with Cygwin
copy the binary sf32asm.exe into the cygwin/bin directory.

1.4 Feature summery
• Shell based command line tool
• Supports the sf32b ISA
• Dual pass assembler concept with executable code generation (no linking)
• Multiple source/header files are handled with an include directive
• Syntax and directives are close to the GNU assembler
• Comprehensive generation of self-explanatory error messages
• Simple, text readable code file format with text, data and symbol records in a single file
• Code files can be read directly by the dcs simulator and the sf32db command line debugger
• Generates a log file with the generated code and a symbol table

1.5 Invocation
The assembler is invoked by typing sf32asm in the command shell followed by a single source file name as
argument. For programs with multiple source files the easiest solution is to create a master source file with
include directives for all other source files and then use the master source file as argument when the
assembler is invoked.
The assembler generates two output files, a code file with the same name as the source file but with a .cod
extension instead of the .asm extension of the source file. The second output file is the log file which has the
same name as the source file but with a .log extension.

1.6 Structure of this manual
Below are brief descriptions of the remaining chapters of this manual:
Source file format, describes the syntax of comments, labels, directives and instructions
Output file formats, describes the format of the generated code and log files
Notes, contains some hints for programmers

 sf32asm User Manual 28.12.2013

4 Property of RACORS GmbH Rev. 1.0

2 Source file format

2.1 Overview
Assembler source files have line based syntax. The following line types are distinguished by the first
character of the line:

• Lines starting with a ‘;’ character are comment lines
• Lines starting with a white space character and have no further syntax elements (blank lines)
• Lines starting with a ‘a’-‘z’ or ‘A’-‘Z’ letter or a ‘_’ character are global label lines
• All other lines are instruction or directive lines

Comment and blank lines are ignored by the assembler.
Global label lines start with an identifier (see definition further below) in the first character of the line. The
identifier is immediately followed by a ‘:’ character. No further syntax elements except a comment following
the ‘;’ character are allowed.
Instruction and directive lines have a common format with three main parts from left to right

1. Local label (optional)
2. Instruction or directive mnemonic
3. Operand field (optional)

The parts must be separated by at least one space character. Local labels must start in the first character of
a line. If the first character is a space character no label is present and the next non-space character is
interpreted as the start of a mnemonic.
Lines of source files can have a maximum length of 256 characters. If the parser detects a ‘;’ character the
remainder of the line is treated as comment and is ignored.

2.2 Operand field syntax
The sf32asm assembler implements the operand field syntax as defined in the sf32 ISA reference manuals.
Address and data constants of instructions and directives are specified as arithmetic expressions. The
operands of arithmetic expressions are symbolic constants (labels, defined symbols) and numbers. A full set
of integer operators (arithmetic, logic and shifts) is available.
The next paragraphs define the supported syntax elements.
Single character elements: The following characters are used by the sf32 assembler language as defined
in the ISA reference manuals (put in a single string for better readability) “, . : + - * () []”. In addition the
following characters are used as arithmetic operators in expressions “ / % & | ^ ~ =”.
The “ + - * “ characters are used both as arithmetic operators and in the sf32 assembler language syntax.
Dual character elements: The “>>” and “<<” symbols are used as shift operators in arithmetic expressions.
Numbers: 32-bit signed or unsigned integers, can be specified in decimal format (sequence of the letters 0-
9), in hexadecimal format (prefix 0x followed by a sequence of the letters 0-9,a-f,A-F) or in binary format
(prefix 0b followed by a sequence of letters 0 and 1).
Identifiers: sequences of letters a-z, A-Z, 0-9, and the ‘_‘ characters, must start with a non-digit character,
maximum length is 80 characters, identifiers are case sensitive, keywords (see below) cannot be used as
identifiers
Strings: sequences of any printable characters and blanks (except for the double quote ‘”’ character)
enclosed in double quote ‘”’ characters, CR (carriage return) control characters can be specified with the \n
2-letter sequence, maximum length is 256 characters.
Keywords: The processor register names and a number of other words used in the sf32 assembler
language are reserved keywords and cannot be used as identifiers. Keywords are not case sensitive. The
following is a list of all keywords in alphabetical order: alw, audio, base, baser, cc, cs, dsp, f, ia, icr, id,
ige, igt, ihi, ile, ilo, ils, inc, ing, ino, inz, iof, ips, izr, lc, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re,
rf, rp, rq, ru, rv, rw, rx, ry, rz, sa, t, ta.
Instruction and directive mnemonics are treated separately by the parser and are therefore not keywords. It
is however recommended not to use them as identifiers.
Expressions: expressions are a way to specify address and data constants in the operand fields of
directives and instructions indirectly or relative instead of using number constants directly, similar as ‘defines’
are used in C language programs. Operands of expressions can be numbers, global labels, local labels and
symbolic constants defined with .set directives. Operators and the way they are used are compatible with C-

 sf32asm User Manual 28.12.2013

5 Property of RACORS GmbH Rev. 1.0

language expressions regarding associativity and precedence. Round brackets ‘(‘ ‘)’ can be used to change
the order of operations. The following unary and binary operators are supported:
Unary operators: - , +, ~
Binary operators: + , - , * , / , % , & , | , ^ , >> , <<

2.3 Labels
The assembler supports GNU syntax compatible global and local labels. Global labels must follow the
syntactical rules for identifiers (see Operand field syntax section).
One major difference to the GNU assembler is that the scope of global labels is the entire program and not
only the local source file. Therefore global labels must be unique across all source files of a program and
don’t need to declared ‘external’ if referenced in a different source file.
Another difference is that global labels must be specified in separate lines. Only local labels can be placed
together with an instruction or directive in the same line.
Local labels must start in the first character of a line. They consist of a single digit ‘0’ – ‘9’ character followed
by a ‘:’ character. Consequently only 10 different local labels can be specified, but each of them can be used
multiple times in the same source file and across an entire program. The scope of a local label is between
the next and previous occurrence of the same label.
Local labels are referenced by their number followed by a ‘b’ (backward) or ‘f’ (forward) character. E.g. 4b
references the next 4: label in backward direction, 7f references the next 7: label in forward direction. Local
labels are most commonly used as targets of short distance branch and jump instruction.

2.4 Directives
Directive lines start with an optional local label followed by the directive mnemonic followed by an optional
operand field. Directive mnemonics start with a ‘.’ (full stop) character.
For the following syntax descriptions single character syntax elements are enclosed in single quote
characters, optional elements are enclosed in square brackets, mandatory elements are enclosed in angular
brackets and repetitive elements are enclosed in curly brackets as summarized below:
‘single character syntax element’
[optional syntax element]
<mandatory syntax element>
{repetitive syntax element}
The general syntax format of directives is:
[label] <mnemonic> [operand field]
The following paragraphs are detailed descriptions of the sf32asm assembler directives in alphabetical order,
directive mnemonics are printed in bold.

[local label] <.adrofs> <offset>
Address offset. The specified 32-bit offset (type = expression) is added to the address of generated code
records of the current section (test or data). Note that the sf32asm assembler has separate address counters
for the text and data sections. The specified offset is added only to code record addresses of the current
section.
This directive is typically placed immediately after an .org (origin) directive. Purpose is to generate code that
can be loaded directly into data or instruction memories that do not start at address zero in the respective
processor address space (instruction or data). In most cases the specified offset is negative to compensate
the non-zero start address of a memory. The default offsets for both text and data sections are zero.

[local label] <.ascii> <string>
Ascii constant data. The text string is converted to a sequence of bytes (one byte per character) and added
to the current code section at the current address. The current section address is then incremented by the
length of the string.
This directive is equivalent to the .byte directive specifying individual characters of a string with their ASCII
byte codes, separated by commas. The .ascii directive is a more convenient way to define text readable
data as constant byte data.

 sf32asm User Manual 28.12.2013

6 Property of RACORS GmbH Rev. 1.0

[local label] <.asciz> <string>
Ascii constant data for null-terminated strings. The text string is converted to a sequence of bytes (one byte
per character) and added to the current code section at the current address. An extra 0x00 byte is appended
at the end of the byte sequence. The current section address is then incremented by the length of the string
+ 1. This directive is used the same way as the .ascii directive but for null-terminated strings.

[local label] <.byte> <val1> [{‘,’ valn}]
Constant byte data. The specified constant byte data are added to the current code section at the current
address. The current section address is then incremented by the number of specified data items. At least
one data value <val1> must be specified, additional data items [valn] (n = 2 to max 32) can be added
separated by commas.

[local label] <.data>
Switch to data section. The assembler switches to the data section. Any code generated from this point to
the next .text directive is written to the data section.

[local label] <.include> <string>
Include source file. The file specified by the string is included as source file. The parsing of source lines
immediately switches to the included file. Because the scope of global labels is the entire program the order
in which files are included is relevant. Nested include files are not supported.

[local label] <.isa> <base>
Select processor ISA (Instruction Set Architecture). The ISA selection determines the supported instruction
set. This sf32asm version only supports the sf32b (base) ISA.

 [local label] <.long> <val1> [{‘,’ valn}]
Constant long data. The specified constant long (32-bit) data words are added to the current code section at
the current address. The current section address is then incremented by the number of specified data items
multiplied by 4. At least one data value <val1> must be specified, additional data items [valn] (n = 2 to max
32) can be added, separated by commas.

[local label] <.org> <address>
Origin. The address counter of the current section (text or data) is set to the specified byte address. The
address is a 32-bit expression. When the sf32asm assembler is invoked the address counters of both text
and data sections are set to zero.

[local label] <.p2align> <exponent>
Power of 2 align. The address counter of the current section (text or data) is set to the next address that is
aligned to the specified power of two. The power of 2 exponent is a 32-bit expression.

 [local label] <.set> <name> ‘,’ <value>
Define constant. A constant symbol with the specified name (identifier) and specified value (32-bit
expression) is added to the symbol list. The symbol can be used as operand in expressions.

 [local label] <.short> <val1> [{‘,’ valn}]
Constant short data. The specified constant short (16-bit) data words are added to the current code section
at the current address. The current section address is then incremented by the number of specified data
items multiplied by 2. At least one data value <val1> must be specified, additional data items [valn] (n = 2 to
max 32) can be added, separated by commas.

[local label] <.text>
Switch to text section. The assembler switches to the text section. Any code generated from this point to the
next .data directive is written to the text section.

 sf32asm User Manual 28.12.2013

7 Property of RACORS GmbH Rev. 1.0

2.5 Instructions

Syntax
The sf32asm assembler is fully compatible with the assembler syntax described in the sf32 ISA reference
manuals. Details are not specified here but can be looked up in the ISA reference manual of the respective
processor. Operand field syntax is checked for correctness and error messages are generated in case of
syntax errors.

Semantic
The assembler checks a number of semantic rules and generates error messages in case of errors. The
most important rules and associated error messages are:
Illegal addressing mode: the operand field may have correct syntax but the addressing mode derived from
this syntax is not available for the specified instruction
Range exceeded: Address and data constants contained in the operand fields of instructions usually have a
limited legal range of signed and/or unsigned values. If a specified expression exceeds this range an error
message is generated pointing at the type of address or data constant.
Illegal register use: Some addressing modes have register operands that allow only a certain subset of
processor registers. An error message is generated if an illegal register is specified.
Misaligned instruction address IA29U: This addressing mode specifies an absolute instruction address
which must be aligned on a 32-bit word boundary. An error message is generated if this is not the case.

Forward References
The sf32asm assembler allows forward references. Labels and symbols can be used in expressions before
they are defined. The assembler handles this with a dual pass concept that calculates defined values for all
labels and symbols in the first pass and then uses these values in the second pass.

Pseudo addressing modes
To improve the readability of source code the sf32asm assembler supports a number of pseudo addressing
modes. These are additional operand field formats that are not defined by the native instruction sets of the
sf32 processors. A pseudo addressing mode omits certain components of a native addressing mode (e.g. a
register) and fills in a default value for this component.
Example is the condition specifier of instructions with conditional execution. In most cases these instructions
are used unconditionally which means that the ALW (always) condition would have to be specified in the
operand field. Instead a pseudo addressing mode can be used that omits the condition specifier in the
operand field. The assembler fills in the code for the ALW specifier.
One disadvantage that should be considered when using pseudo instructions is the fact that disassembled
code, e.g. in simulation listings or debugger traces always shows the native addressing mode and operand
field syntax, which with the use of a pseudo addressing mode looks different from the source code
instruction. This may be confusing especially for programmers that are not very familiar with the native
instruction set of the processor.
The following table lists the pseudo addressing modes supported by the sf32asm assembler. For the
acronyms used refer to the ISA reference manuals of the sf32 processors.

 sf32asm User Manual 28.12.2013

8 Property of RACORS GmbH Rev. 1.0

Instructions Native addressing
mode

Pseudo addressing
mode

Omitted
component(s)

Default value(s)
inserted

addt,subf
C16U,Rs1,Rd C16U,Rd Rs1 Rd

C12U,Rs1,Rd,CND C12U,Rd,CND Rs1 Rd

addc,subc C12U,Rs1,Rd,CND

C12U,Rs1,Rd CND ALW

C12U,Rd,CND Rs1 Rd

C12U,Rd Rs1,CND Rd,ALW

addh C32U,Rs1,Rd C32U,Rd Rs1 Rd

and,iorb,xorb

mlcu
C16U,Rs1,Rd C16U,Rd Rs1 Rd

mlcs C16S,Rs1,Rd C16S,Rd Rs1 Rd

move
C16U,Rd,CND C16U,Rd CND ALW

Rs,Rd,CND Rs,Rd CND ALW

movs C16S,Rd,CND C16S,Rd CND ALW

shlz,shru,shlf

shrs
SHC5U,Rs1,Rd,CND

SHC5U,Rs1,Rd CND ALW

SHC5U,Rd Rs1,CND Rd,ALW

btst,btcl,bttg BTI5U,Rs1,Rd,CND
BTI5U,Rs1,Rd CND ALW

BTI5U,Rd Rs1,CND Rd,ALW

btts
BTI5U,Rs1,CND BTI5U,Rs1

CND ALW
Rs0,Rs1,CND Rs0,Rs1

addt,subf

addc,subc

andb,iorb,xorb

mult,mlhu,mlhs

btst,btcl,bttg

shlz,shru,shlf

shrs

Rs0,Rs1,Rd,CND

Rs0,Rs1,Rd CND ALW

Rs0,Rd,CND Rs1 Rd

Rs0,Rd Rs1,CND Rd,ALW

negt,absl,invt

clz,ibos,ibol
Rs,Rd,CND

Rs,Rd CND ALW

Rd,CND Rs Rd

Rd Rs,CND Rd,ALW

ldbz,ldbs,ldsz

ldss,ldlg

DA16S,Rd,CND DA16S,Rd

CND ALW

(DO11S,An),Rd,CND (DO11S,An),Rd

(An,AU12S)*,Rd,CND (An,AU12S)*,Rd

(Rx,An),Rd,CND (Rx,An),Rd

(An,Ru)*,Rd,CND (An,Ru)*,Rd

stbt,stsh,stlg

Rs,DA16S,CND DA16S,Rd

CND ALW

Rs,(DO11S,An),CND (DO11S,An),Rd

Rs,(An,AU12S)*,CND (An,AU12S)*,Rd

Rs,(Rx,An),CND (Rx,An),Rd

Rs,(An,Ru)*,CND (An,Ru)*,Rd

blcc IO16S,S IO16S S T or F (*)

 (*) The default value inserted for the S (speculation) component of conditional branches depends on the
branch direction. For backward branches T (True = branch taken) is inserted, for forward branches F (False
= branch not taken) is inserted.

 sf32asm User Manual 28.12.2013

9 Property of RACORS GmbH Rev. 1.0

3 Output file formats

3.1 Code file
The generated code file has a simple, text readable format and contains the code of both text and data
sections as well as a list of the global symbols. Each line contains one code record which can be a text
record, a data record or a symbol record. The first character of the line determines the record type and is a
‘T’ for text records, a ‘D’ for data records and a ‘S’ for symbol records. The record type character is followed
by a ‘-‘ character and then by a 32-bit byte address in an 8-digit hexadecimal format. The address field is
followed by a single space character as separator. From there on the format is different for text and data
records on one side and symbol records on the other side.
For data and text records the next field is the record length printed as 2-digit decimal number and followed
by two space characters. The remainder of the line consists of a number of byte fields equal to the record
length. The byte fields are printed as 2-digit hexadecimal numbers separated with a space character.
For symbol records the next field after the blank character following the address field is a single character
symbol type specifier which is a ‘T’ for a text section label, a ‘D’ for a data section label and a ‘C’ for a
constant. The symbol type specifier is followed by a single space character as separator. The last field is the
symbol name printed as variable length text string.

3.2 Log file
The generated log file is intended as a debugging aid for software, simulation models and for the assembler
itself. All source files that are read during an assembler run are echoed into the log file. Each line starts with
a 20 character code field generated by the assembler followed by a copy of the source file line. Following the
echoed source file(s) is a list of all global and local labels. At the end of the file is a statistics summery with
the sizes of text and data sections in bytes and the total number of symbols.
The assembler generated field in each line of the echoed source files starts with a section marker character
which is a ‘D’ for data sections and a ‘T’ for text sections. The next component is the current 32-bit byte
address printed as eight hexadecimal digits. The printed address is always aligned on a 32-bit word which
means that the two LSBs are zero. It represents the 32-bit word address of the following code field.
The code field consists of a 32-bit word printed as 8-digits hex number. Bytes within 32-bit words for which
no code has been generated are printed as two ‘-‘ characters. If the code generated from a source line does
not fit into a single code field additional lines are printed with only an assembler generated code field and no
echoed source line following. Opcodes in text sections must be aligned on a 32-bit boundary and the code
field is a full 8-digit hex number. In data section it depends on the address counter and on the number of
code bytes generated how many lines are printed. The address counter in a data section does not have to
be aligned on a 32-bit boundary. The ‘—‘ printed bytes indicate the actual position of the address counter.

 sf32asm User Manual 28.12.2013

10 Property of RACORS GmbH Rev. 1.0

4 Notes

4.1 Text and data section addresses
The sf32asm assembler has separate address counters for the test and data sections. Both are set to zero
when the assembler is invoked. The address counter of the current section is updated by .org directives,
.p2align directives, by constant data (.byte, .short, .long, .ascii and .asciz directives) and by instructions.
The other address counter (of the non current section) is not affected.
Code is always generated for the current section. If instruction lines occur in the source code within a data
section then the code is written into the data section with no warning. If constant data lines occur within a
text section the code is written into the text section with no warning. While this can be useful in some rare
cases it is not what programmers want in most cases. So care must be taken to make sure all code is
generated for the intended section.
All sf32 instruction and data addresses are specified as 32-bit byte addresses. Instruction addresses always
must be aligned on 32-bit boundaries. If this is violated e.g. by a .org directive or by an absolute instruction
address in an operand field the assembler generates an error message.
Data addresses don’t need to be aligned on the addressed data type and therefore are not checked for
alignment by the assembler. However support for misaligned 16-bit, 32-bit or 64-bit accesses is not
implemented in the sf32 processor cores. If required it must be implemented in the bus glue logic.
Programmers must either make sure that data addresses are always aligned on the addressed data word
size or that the target system supports misaligned accesses.

4.2 Known Problems
Some operand field syntax errors cause the assembler to hang up after printing an error message. The
assembler must then be terminated with a Ctr-C character in the shell window.
When using multiple .org directives for the same section care must be taken that the generated code
address windows do not overlap. The assembler does not check if code for the same address location is
generated multiple times.

